• Title/Summary/Keyword: fire scenarios

Search Result 236, Processing Time 0.036 seconds

A Study on the Arson Fire Characteristics based on Domestic Fire Statistics and Computer Simulation (국내화재통계 및 컴퓨터 시뮬레이션에 의한 방화화재 특성에 관한 연구)

  • Choi, Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • With the development of the Korean economy, the number of arson fire has been radically increased and become a huge problem and issue in Korea Society for last several decades. This study is to establish the fire life safety strategy regarding the arson fire through researching domestic fire statistics and performing the computer simulation based on fire scenarios with cutting edge techniques and methods for fire characteristics and fire dynamic. In addition, to design the fire life safety strategy depending on the arson fire pattern, the flow and characteristics of fire flames and smoke are analyzed by the computer modeling.

Development of Walk-down Performance Procedures for Fire Modeling of Nuclear Power Plants based on Deterministic Fire Protection Requirements (결정론적 화재방호요건을 기반으로 한 원자력발전소 화재모델링 현장실사 수행절차 개발)

  • Moon, Jongseol;Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.43-52
    • /
    • 2019
  • A walk-down procedure for fire modeling of nuclear power plants, based on deterministic fire protection requirements, was developed. The walk-down procedure includes checking the locations of safety shutdown equipment and cables that are not correctly indicated on drawings and identifying the existence and location of combustibles and ignition sources. In order to verify the performance of the walk-down procedure developed in this study, a sample of important equipment and cables were selected for hypothetical multiple spurious operation (MSO) scenarios. In addition, the hypothetical fire modeling scenarios were derived from the selected safe shutdown equipment and cables and an actual walk-down was conducted. The plant information collected through the walk-down was compared to the information obtained from the drawings, so that the collected information may be used as input values for the fire modeling.

Pressure Differentials in the Elevator Lobby Depending on the Evacuation Scenarios (피난 시나리오에 따른 승강장 부속실 차압 특성 연구)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • The aim of this paper is to investigate the change of pressure differential and smoke propagation characteristics in the elevator lobby with the resident's evacuation scenarios using fire modelling technique. The results showed absolute pressures in the fire room and elevator lobby can significantly increase to cause fire door to the stairway unclosed once it is open. This is due to constant pressure differentials, the increasing reference pressure of fire lobby and pressure leak from elevator lobby to fire lobby. Smoke exhaust mechanism was needed to prevent the continuous pressure rise in the living room. Over 200 Pa was expected upon closing the door during pressurization, which provide difficulties in opening the door for next refugee. Opening both fire door and entrance door may induce smoke flow from fire room to elevator lobby and stairway.

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.

A Study on Fire Spread between Office Room and Atrium in the Atrium Building

  • Lee, Su-Kyung;Kim, Jong-Hoon;Ko, Han-Mog
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.345-352
    • /
    • 1997
  • We could analyse the fire behavior using the developed software for fire safety assessment in a large space such as atrium. But Korean building law hasn't admitted the result of fire risk assessment in atrium. In the legislation fire resistant wall or shutter must be required between atrium and office rooms, That has obstructed development of building design and fire protection technique in Korea. From this point of view, we made scenarios of fire spread between atrium and office rooms, and then computed fire spread and fire phenomena using FASTLite and Breakl. In this study, we can decide that fire compartmentalization between atrium and office rooms doesn't require in Atrium building if the material and fire protection system were reliable. Consequently, Korean Fire Protection Regulations have to consider in direction of increasing freedom of building.

  • PDF

A Study on Fire Scenario Analysis Based on Fire Statistics for Building Fire Risk Analysis (건축물 화재위험평가를 위한 화재통계 기반 화재시나리오 분석에 관한 연구)

  • Jin, Seung-Hyeon;Kim, Hye-Won;Koo, In-Hyuk;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.81-82
    • /
    • 2022
  • This study aims to establish a methodology for rational fire risk assessment for building evacuation safety in case of fire, and specifically, to propose a fire risk assessment technique using fire scenarios considering various uncertain factors in case of fire. In order to analyze the extent to which the assumed conditions can occur, that is, the probability of each accident caused by fire, the safety rate is analyzed according to the presence or absence of each factor by using fire statistics. Factors related to the fire protection performance and evacuation ability of buildings are defined as disaster factors. In this study, disaster factors were classified into the following three categories.

  • PDF

A Study on the Arson Fire Char-acteristics based on Computer Simulation (컴퓨터 시뮬레이션에 의한 방화화재 특성에 관한 연구)

  • Choi, Jin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.239-253
    • /
    • 2007
  • With the development of the Korean economy, the number of arson fire has been radically increased and become a huge problem and issue in Korea Society for last several decades. This study is to establish the fire life safety strategy regarding the arson fire through performing the computer simulation based on fire scenarios with researching domestic fire statistics and cutting edge techniques and methods for fire characteristics and fire dynamic. In addition, to design the fire life safety strategy depending on the arson fire pattern, the flow and characteristics of fire flames and smoke is analyzed by the computer modeling.

  • PDF

Implementation of Fire Risk Estimation System for various Fire Situations using Multiple Sensors (다중 센서들을 이용한 다양한 화재 상황의 위험도 추정 시스템 개발)

  • Lee, Kwangjae;Lee, Youn-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 2016
  • In this paper, a fire detection system based on quantitative risk estimation is presented. Multiple sensors are used to build a comprehensive indicator that represents the risk of fire quantitatively. The proposed fire risk estimation method consists of two stages which determines the occurrence of fire and estimates the toxicity of the surveillance area. In the first stage, fire is reliably detected under diverse fire scenarios. The risk of fire is estimated in the second stage. Applying Purser's Fractional Effective Dose (FED) model which quantitates harmfulness of toxic gases, the risk of the surveillance area and evacuation time are calculated. A fire experiment conducted using four different types of combustion materials for the verification of the system resulted in a maximum error rate of 12.5%. By using FED calculation and risk estimation methods, the proposed system can detect various signs of fire faster than conventional systems.

Fire-induced damage on Shield TBM concrete segment (터널 화재로 인한 콘크리트 세그먼트의 손상특성 규명)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.423-430
    • /
    • 2005
  • Fire accidents in underground space may bring much loss of lives as well as properties and result in catastrophic disasters. This study aimed to manufacture the high-temperature furnace capable of simulating fire scenarios (RABT and RWS) and carry out the preliminary fire tests to evaluate fire-induced damage in underground structures. Specimens used in the fire tests were the concrete segments generally used in shield TBM tunnels. The simulated fire scenario was set to the RABT curve that is the most representative fire scenario in underground space. From the fire tests, the spalling was estimated to reach approximately 20cm from the surface exposed to fire. In addition, from the observation of core specimens obtained after fire tests, the deteriorated zone of unspalled specimens amounted to approximately 10cm from the surface of spalling.

  • PDF

A Study on the Behaviour of Smoke Spread Caused by Vehicle Fire in a Road Tunnel (터널 내 차량 화재에 따른 연기 확산 거동에 관한 연구)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.365-372
    • /
    • 2012
  • This paper aims to evaluate the effects that presence, installation number and capacity of ventilation vent and presence of multiple fire sources have on the behaviour of smoke temperature induced by vehicle fire in road tunnel. Six types of scenarios were assumed and FDS was ran to simulate them. As the number of ventilation vents increases, the smoke temperature are calculated to be reduced, but it is shown that effects exerted by two ventilation vents are almost similar to ones by three ventilation vents. Capacity of ventilation vent has a greater impact on the reduction of smoke temperature than installation number of ventilation vents. Smoke temperatures computed for all scenarios except for scenario No. 1 (without ventilation vent) and scenario No. 6 (with multiple fire sources) above fire source are analyzed to be under $400^{\circ}C$ and it means that the radiation of smoke layer above fire source doesn't induce the ignition of materials around fire source.