• Title/Summary/Keyword: fire resistant

Search Result 269, Processing Time 0.029 seconds

Development of Acceleration Duability test condition for Fireproof Spray-Application. (옥내용 뿜칠내화피복재의 촉진내구성 조건 설정 연구)

  • Kim, Dae-Hoi;Lee, Gun-Chol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.170-171
    • /
    • 2014
  • The buildings constructed with steel structure is coated with certified fire resistive material to resist from fire. Coating materials lose their initial performances as time passes, so they need some maintenance. This study is covers standardization of the methods for assessing the durability of SFRM. In Korea, more than 90 percent of SFRM are used indoors. So This study is to decide proper test method through investigation and examination of effect factor to performance of fire-resistant structure and applicable test method.

  • PDF

A Investigation Study on the Recommendation for the Evacuation Plan using Evacuation Elevator of AIJ (I) (일본건축학회의 화재 시 피난 엘리베이터를 이용한 피난계획 지침안(案)에 대한 조사 (I))

  • Kwon, Young-Jin;Yun, Yoo-Hyuk
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.3-6
    • /
    • 2008
  • Most elevators worldwide do not have smoke protection, fire protection, and other features necessary for them to be considered as a means of fire evacuation. It is the aim of this study to investigate and analyze the recommendation for the evacuation plan using evacuation elevator of AIJ the aim of this study is to introduce AIJ method for the safety plan using evacuation elevator of high rise building written by working group fire resistant.

  • PDF

A Study on Fire-Resistant Improvement of Concrete with nano size materials (나노소재를 이용한 콘크리트의 내화성능향상 연구)

  • Jo, Byung-Wan;Park, Jong-Bin;Choi, Hae-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.481-484
    • /
    • 2005
  • Recently, Since the advanced nano technology develops unique physical and chemical properties different from those of the conventional materials. Normal concretes mixed with nano size materials have been studied to improve the fire-resistance with high strength and lower heat conductivity. In this pilot study, the nano-particle contents in the specimens ($\Phi$10\times20 cm$) were 0, 2, 4, and 6$\%$ by weight of cement, and fire-temperatures 800$^{circ}C$ was considered. The results show that as the nano-particle contents increases, fire resistance of concrete are superior to those of the ordinary concrete. Also, the experimental results show that fire resistance of nano Aluminum hydroxide dispersed concrete are superior to those of the nano-SiO2 concrete.

  • PDF

Development of Acceleration Duability test condition for Fireproof Spray-Application(II). (옥내용 뿜칠내화피복재의 촉진내구성 조건 설정 연구(II))

  • Kim, Dae-Hoi;Lee, Gun-Chol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.109-110
    • /
    • 2014
  • The buildings constructed with steel structure is coated with certified fire resistive material to resist from fire. Coating materials lose their initial performances as time passes, so they need some maintenance. This study is covers standardization of the methods for assessing the durability of SFRM. In Korea, more than 90 percent of SFRM are used indoors. So This study is to decide proper test method through investigation and examination of effect factor to performance of fire-resistant structure and applicable test method.

  • PDF

Development of Acceleration Duability Test Method for Fireproof Spray-Applocation (옥내용 뿜칠내화피복재의 촉진내구성 시험방법 연구)

  • Kim, Dae-Hoi;Lee, Gun-Chol;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.104-105
    • /
    • 2013
  • The buildings constructed with steel structure is coated with certified fire resistive material to resist from fire. Coating materials lose their initial performances as time passes, so they need some maintenance. Fireproof spray-application also loses its performance and this performance loss of thr fireproof spray-application is very important because fire resistance of buildings depends on fireproof spray-application. So this study is to develop Acceleration durability test method of Fireproof spray-application, and use the Certification of fire resistant coating system.

  • PDF

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Experimental evaluation of fire protection measures for the segment joint of an immersed tunnel (침매터널 세그먼트조인트의 내화 대책에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kim, Heung-Youl;Jo, Bong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.177-197
    • /
    • 2011
  • In this study, a series of fire experiments under $HC_{inc}$ and ISO834 (duration of 4 hour) fire scenarios were carried out for three different types of fire protection measures for the segment joint to evaluate their applicabilities to an immersed tunnel. The experimental results revealed that an expansion joint installed to allow relative movements between concrete element ends in an segment joint is the most vulnerable to a severe fire. For the fire protection measure where the originally designed steel plates at an expansion joint arc replaced by fire-resistant boards, the experiments showed that they cannot achieve good fireproofing performance under both $HC_{inc}$ fire scenario and ISO834 (4 hour) fire scenarios since the installation of fire-resistant boards results in the reduction of the sprayed fire insulation thickness. On the other hand, the application of modified bent steel plates replacing the original steel plates was proved to be very successful in fireproofing of the expansion joint due to more sprayed materials filled in bent steel plate than in the original design concept as well as higher adhesion between the steel plate and the sprayed fire insulation layer.

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.