• Title/Summary/Keyword: fire fuel

Search Result 426, Processing Time 0.03 seconds

Performance of Fire Extinguishing of Water Mist Nozzle for Power Transformer Fire Scenario (주 변압기실 화재시나리오에 적용한 미세물분무 노즐의 소화성능)

  • Lee, Kyoung-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.46-54
    • /
    • 2006
  • Fire extinguishing experiment was conducted with water mist nozzle in case of the pool fire, cascade fire and spray fire on flammable liquid of class B whether water mist system can be effective system for power transformer fire scenario. In the event of a pool fire, flow rate and time to extinguish was inclined to be increased according to the obstruction rate of ignition space. Furthermore, the performance of fire extinguishing depended upon the spraying angle of the nozzles. In case of cascade fire, the effect of extinguishment was began to show from a combustion pan filled with fuel and fuel flowing plate later on.

A Study on Damage Assessment for Fuel Cell Facilities in Gas Stations (주유소 내 연료전지설비에 대한 사고피해예측 연구)

  • Sung Yoon Lim;Jang Choon Lee;Jae Hoon Lee;Seung Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Fuel cells are low-carbon power sources that can expand distributed energy system and electric vehicle charging infrastructure when installing fuel cells in gas stations. In order to ensure safety for fuel cells in gas stations, quantitative risk assessments were conducted after deriving accident scenarios based on accident data of domestic and foreign gas stations and fuel cells. It calculates the expected extent of damage from fire and explosion that can occur in reality, not the worst accident scenario, and analyzes the damage impact. The separation distance of more than 9.0 m from a dispenser, 15.5 m from a car under refueling, 4.1 m from the ventilation pipe, 1.1 m from the gas adjustment device prevent the severe damage caused by the expected accident. This study result can be used to deploy fuel cells in gas stations and establish safety measures.

RISK EVALUATION OF CARBON MONOXIDE IN COMPARTMENT FIRE

  • Kim, Kwang Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.66-76
    • /
    • 1997
  • In order to investigate the generation of carbon monoxide and heat loss of incomplete combustion in compartment fires, an experiment was conducted in a small scale compartment by using methanol as a fuel. The concentration of carbon monoxide and the toxicity parameter showed high values when the mass air - to - fuel stoichiometric ratio is under 1.0. The constitution of the combustion gas was showed to estimate it from the . The heat loss due to incompleteness of combustion is about one third of heat of combustion in case of under 1.0.

  • PDF

A Study on Case Analysis of Motor Vehicle Fires Which Occurred in Operation but Were Found after Parking (주행 중 발생한 자동차화재를 엔진정지 주차 후 발견한 화재 사례 분석 연구)

  • Lee, Eui-Pyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.9-16
    • /
    • 2012
  • It is often thought that when a fire is found in parked motor vehicles, the fire may occur after an engine stops. Also, it is easy to judge that when motor vehicle fires occur during engine stopping, it may be caused by arson or electrical causes irrespective of a fuel system. This study analyzed motor vehicle fires which occurred in operation but were found after parking and revealed that these fires were caused by the defect of a fuel system and the same motor vehicle types had fires by the same causes. Moreover, this study provided judgement process of major fire causes and periods for fire investigators to apply when investigating fires of parked motor vehicles. And this fire is related to automotive products liability.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

Study for Fire Examples of LPG Leakage Including Fuel hose, Injector and Pressure Regulator Connector in Vehicle (자동차 연료호스, 인젝터 및 압력조절기 연결부에서 LP 가스 누출에 의한 화재사례 고찰)

  • Lee, Il Kwon;Kook, Chang Hoo;Suh, Moon Won;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • The purpose of this paper is to study for fire example by fuel leakage in LPG Vehicle. At first example, the car was repaired the fuel line that was connected with pressure hose between fuel regulator and injector in engine. But the service man was not very tighten with regular torque. At a result, the gas leaked on hot parts of engine. It verified the production of fire by engine heat. At second example, when the repair man, after replacement the injector, inserted the injector in a assembling part of it, he didn't the transform condition of fixing part. Therefore, the tearing phenomenon of O ring producted the controlled leakage of fuel by the injector deflection. It found the fact that the fuel leaked with gap of O ring. At third example. the fuel-cut solenoid valve was lined with pressure regulator unit. But the service man didn't throughly certify the leaked work of connected parts after repaired it. As a result, it certified the fire by engine heating leaked liquefied petroleum gas. Therefore it have to minimize the fire production that the driver should do no problem to throughly manage the fuel system.

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

Development of Prediction Model of Fuel Moisture Changes After Precipitation in the Spring for the Pine Forest Located the Yeongdong Region (Focused on the Down Wood Material Diameter) (영동지역 봄철 소나무림에서 강우후 연료습도변화 예측모델 개발 (지표연료 직경두께를 중심으로))

  • Lee, Si-Young;Kwon, Chun-Geun;Lee, Myung-Woog;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-26
    • /
    • 2010
  • The change of fuel moisture according to the passed days after a raindrop is very important to forecast risk of forest fire and to make a good use of forest fire watchmen. For that reason, in the Spring of 2007, we researched pine forest that were widespread growing in Yeongdong region to find out the condition of forest fire risk. We developed the forecast model of fuel moisture change on dead tree branches which were dropped on the ground and less than 0.6 cm, 0.6~3.0 cm, 3.0~6.0 cm, and more than 6.0 cm in diameter after more than 5.0 mm in precipitation. The result showed that the less diameter of ground fuel and small stand of pines the faster diminishing of fuel moisture, and the days of reaching to a forest fire danger fuel moisture level were represented by two (2) days for less than 0.6 cm diameter of small stand of pine and three (3) days for 0.6~3.0 cm diameter one, respectively. By those results, we developed the forecast model($R^2=0.76{\sim}0.92$) of fuel moisture change on different diameter of small stand of pine, and found that the model had statistical significant of 1% level after we applied it to the data of 2008 after the same period of raindrop by actual meteorological measurement.

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

Study on Flame Height Equation for the Pinus densiflora Surface Fuel Bed (소나무 낙엽층 화염높이 산정식에 관한 연구)

  • Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.10-15
    • /
    • 2009
  • Flame height calculation in a forest fire is a crucial part of predicting horizontal or vertical flame spread flared by radiation heat transfer. Flame height, which is one of the flame characteristics, can be estimated by the average height of luminous flame. This research relied on flame height observation test on P. densiflora surface fuel bed, which are surface combustibles in a forest, and calorimeter to measure Heat Release Rate, thus produced $H_f=0.027(\dot{Q'})^{2/3}$, flame height calculation equation for surface fuel. The research did not take into consideration such conditions as external velocity, slope and other variables that could affect flame height. According to comparison among experiment results, calculation results of the above formula and those of existing Heskestad formula (1998), it was found that standard error in fallen pine needles between experimental results and calculation results of the above formula amounts to 0.08, whereas standard error in same plant between experimental results and calculation results of existing Heskestad formula amounts to 0.23.