• Title/Summary/Keyword: fire evacuation simulation

Search Result 211, Processing Time 0.027 seconds

Performance-Based Evaluation on Evacuation Safety of Road Tunnels Considering Fire Size and Evacuation Exit (화재 크기와 피난연결통로를 고려한 도로터널의 성능기반 피난안전성 평가)

  • Si-Hyun Oh;In-Wook Heo;Sang-Ki Lee;Seung-Ho Choi;Sunnie Haam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.28-36
    • /
    • 2024
  • In this study, an analytical evaluation of evacuation safety in typical road tunnels was conducted. The Fire Dynamics Simulator (FDS) was employed to perform fire simulations with varying fire sizes to determine the allowable evacuation time in road tunnels. Additionally, evacuation simulations were performed using Pathfinder, considering the width of barrier doors and the spacing of evacuation passageways, to calculate the required evacuation time. A comparison between the allowable and required evacuation times was conducted to assess the impact of fire size, passageway spacing, and barrier door width on tunnel evacuation safety. The results from the fire and evacuation simulations indicated that an increase in fire size and passageway spacing, along with a decrease in door width, resulted in an increase in the number of casualties. Conversely, increasing the barrier door width to more than 1.2meters led to a reduction in casualties as passageway spacing increased.

Evacuation Safety Evaluation According to Slope of the School Ramps

  • Choi, Chang-Jun;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.184-196
    • /
    • 2021
  • This study, in order to evaluate the safety of evacuation by comparing and analyzing the RSET according to the slope change of the ramp, which is a vertical evacuation route in case of fire in a high school building, Evacuation simulation was run the Pathfinder program changed the slope of the ramp to 10°, 15°, and 20° for each male students and female students. In the case of female students, it was analyzed that when the final RSET slope was 15°, 25.7 seconds were shorter than when 10°, and 4.2 seconds were shorter than when 20°. Male students also found that when the final RSET slope was 15°, 23.8 seconds were shorter than when 10°, and 5.4 seconds shorter than when 20°. It was analyzed that even if the number of participants was increased and the evacuation simulation was executed, the safety of evacuation could be improved when the slope of the slope is 15° as the RSET when the slope of the slope is 15° is shorter than that of 10° and 20°.

A Investigation Study on the Development of Egress Simulation for Evacuation Safety Evaluation of Tokyo Fire Dept. Department in Japan (일본 동경소방청의 피난안정성평가 시뮬레이션 기술개발 사례연구)

  • Lee, Hyun-Jin;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.216-222
    • /
    • 2008
  • A large number of Computer-based fire growth and Evacuation model have been developed for various purpose and many of these are widely used for research and engineering. And Most of Egress simulation program are ordinary case only related to human behavior But Egress safety Evaluation is very closed to smog movement. It is well known that the Egress simulation program made by Tokyo Fire Department are related to smog movement. So It is the aim of this study to investigate on the Development of Egress Simulation for Evacuation Safety Evaluation of Tokyo Fire Dept. Department in Japan.

  • PDF

A study on the development of the simulation software for the fire evacuation (화재 대피 시뮬레이션 소프트웨어 개발에 관한 연구)

  • Kim, Young-Heon;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.201-205
    • /
    • 2002
  • In case of fire in the buildings, the appropriate and safe evacuation plans for the building residents are very important to minimize the number of casualties. Since the evacuation time usually depends on the stairs and passages of design of the building, the evacuation plans should be considered while the architectural design is done. Conventionally, the calculation of the evacuation time in the case of fire breakout is based on the approximate mathematical equations which are prone to error. In this study, the simulation software is developed to help the architectural designers to access the more accurate evacuation time and find out the floor plans which offers the most sage evacuation plans for the residents in case of fire.

  • PDF

A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

Proposals on the Input Data Standardization Needs of Fire and Evacuation Simulation in Performance Based Design (성능위주 화재와 피난시뮬레이션 입력데이터의 표준화 필요성에 대한 제안)

  • Jang, Keun Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • National performance-based design methods and prescribed standards for various input data not defined as separated regulation, ASET and RSET fire and evacuation simulations on the data cited by different designers. This is also directly connected reliability problems for the evacuation simulation and performance-based fire. standardizing the various input to performance-based fire and evacuation simulations of a similar risk, regardless of the experience of designer or technical skills. The performance-based targets proper fire-fighting and emergency equipment installed reasonable initial investment cost to done ensure safety.

A Study on Fire and Evacuation of TrainingShip HANBADA using FDS (FDS를 이용한 실습선 한바다호 화재 및 피난 연구)

  • KIM, Won-Ouk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.380-385
    • /
    • 2017
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crews are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. This study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. In case of visibility analysis, it reached to 5m which is the Evacuation Allowable Limit at 117 seconds under the condition of wood fire in 1MW. When there is Kerosene in 1MW, it took 92.4 seconds to reach by 5m which is the Evacuation Allowable Limit. Theoretical evacuation time for the non-tilted ship was 118.8 seconds in 1MW sized fire so it is shown that the most passengers are met the evacuation safety in case of wood fire. However, the majority of passengers could not be ensured the evacuation safety in Kerosene case.

Safety Assessment of the Evacuation at School Building by Escape Training and Simulation (학교건물에서 피난훈련과 시뮬레이션을 통한 피난안전성 평가)

  • Jeong, Mu-Heon;Lee, Beong-Gon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, the evacuation training were performed in a high school building in Cheong-Ju and compared with the simulation program (Simulex). Also numerical analysis of room fire in school building was conducted by fire model (FDS, CFAST) and evaluated the available safe egress time for the safety assessment. As a result, the 8% of total egress persons were failed to escape at evacuation training and 40% of total egress persons were failed to escape at Simutex simulation. Simutex program was not reflected the real escape conditions, such as evacuation route, refuge place, etc.

A COMPUTER SIMULATION MODEL AS A MEANS OF EMERGENCY EVACUATION TRAINING FOR CONSTRUCTION PROJECTS

  • Chung-Suk Cho;Dong-Cheol Shin
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.864-868
    • /
    • 2009
  • Fire safety management on any construction site should start with recognizing fire risks in the workplace, understanding the extent of the risks, and proper assessment of the controls necessary to reduce the risks. However, the most important step to prevent fire-related accidents on jobsites is the constant review and monitoring of processes and controls by all individuals involved. This study was conducted to analyze the effectiveness of using computer simulation as an addition to maps or floor plans in safety training and management. Simulex was used on a real project to model various egress routes and to identify potential problem areas of the evacuation strategy. This study highlights the efficacy of simulated emergency evacuation as a training tool that visually shows constantly altering means of egress.

  • PDF

A study on the simulator development for fire evacuation of the high-rise buildings (초고층 건물의 화재 대피 시뮬레이터 개발에 관한 연구)

  • 박양수;임동진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.308-308
    • /
    • 2000
  • In case of fire in the high-rise buildings, the appropriate and safe evacuation plans for the building residents are very important to minimize the number of casualties. Since the evacuation time usually depends on the floor plans of the buildings, the evacuation plans should be considered while the architectural design is done. Conventionally, the calculation of the evacuation time in the case of fire breakout is based on the approximate mathematical equations which are prone to error In this study, the simulator model is developed to help the architectural designers to access the more accurate evacuation time and find out the floor plans which offers the most safe evacuation plans for the residents in case of fire.

  • PDF