• Title/Summary/Keyword: fire control time

Search Result 356, Processing Time 0.027 seconds

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

HOT-SMOKE TESTS IN TWO UNDERGROUND RAILWAY STATIONS WITH MOVING TRAINS

  • Allan, Hugh
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.472-476
    • /
    • 1997
  • Hot-smoke testing in Australia has progressed to the stage where there is an Australian Standard for these tests. The purpose of such tests is twofold: firstly they can validate computer modeling predictions for smoke movement, and secondly they can demonstrate that the smoke control systems and associated fire safety systems function satisfactorily. Hot-smoke tests were carried out in March 1997 at two of Sydney's underground railway stations, namely St James and Museum. The purpose of the tests was to demonstrate that the smoke control systems performed their functions as intended. Tests were carried out in the concourses and on the platforms, and trains ran during the tests so that the effect of moving trains on smoke movement could be observed. A total of five tests were carried out and video recordings were taken of each. This is the first time that hot-smoke tests have been carried out in an underground station with trains running. The paper discusses some of the interesting observations and the problems identified by the tests.

  • PDF

Assessment of the Habitability for a Cabinet Fire in the Main Control Room of Nuclear Power Plant using Sensitivity Analysis (민감도 분석을 이용한 원전 주제어실의 케비닛 화재에 대한 거주성 평가)

  • Han, Ho-Sik;Lee, Jae-Ou;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.52-60
    • /
    • 2017
  • Numerical simulations were performed to evaluate the habitability of an operator for a cabinet fire in the main control room of a nuclear power plant presented in NUREG-1934. To this end, a Fire Dynamics Simulator (FDS), as a representative fire model, was used. As the criteria for determining the habitability of operator, toxic products, such as CO, were also considered, as well as radiative heat flux, upper layer temperature, smoke layer height, and optical density of smoke. As a result, the probabilities of exceeding the criteria for habitability were evaluated through the sensitivity analysis of the major input parameters and the uncertainty analysis of fire model for various fire scenarios, based on V&V (Verification and Validation). Sensitivity analyses of the maximum heat release rate, CO and soot yields, showed that the habitable time and the limit criterion, which determined the habitability, could be changed. The present methodology will be a realistic alternative to enhancing the reliability for a habitability evaluation in the main control room using uncertain information of cabinet fires.

An Experimental Study on Improvement of Fire Extinguishing Performance of Basic Sprinkler System (간이스프링클러 설비의 소화성능 향상에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.46-51
    • /
    • 2018
  • A basic sprinkler system is a fire extinguishing system that can be easily installed in a fire-vulnerable place such as a publicly used establishments. However, the publicly used establishments are not only complicated in structure, but also have a large amount of flammable interior materials, and the users are not normally in a normal state, which is a very dangerous fire-fighting object. Therefore, due to the low fire extinguishing performance of the basic sprinkler system installed in the publicly used establishments, the fire suppression control can not be performed quickly in case of fire, which may increase the life and property damage. In this study, the cases of quantitative changes of extinguishing water used in basic sprinkler system and the cases of addition of additives such as wetting agents, reinforced agents to improve extinguishing performance were compared. Experimental results showed that the extinguishing performance was improved as the quantity of extinguishing water increase and the reinforced agents showed similar performance to that of 60% increase in the amount of extinguishing water. The cooling time to $200^{\circ}C$ and oxygen concentration were improved up to 14.3% and 34.5%, respectively. In the case of using the wetting agent, the cooling time to $200^{\circ}C$ and oxygen concentration did not show any significant improvement, but showed the effect of preventing deep seated fire. In order to prevent loss of life and property, it is necessary to improve the performance of the basic sprinkler system by increasing amount of extinguishing water or using additives like reinforced agents.

Development of LBS used cellular phone (상용 휴대폰을 이용한 LBS 시스템 구축)

  • Lee, Kyoung-Gyu;Lee, Yong-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.185-190
    • /
    • 2007
  • This article describes a development CDMA LBS in order to apply to "Control System of Underground Infrastructure Fire Accident" which one of U-City Projects of Seoul City. Our goal guides taking shelter of the sufferer it will not be able to use a GPS when the fire occurs from subway station. There are Location measurement methods which measures the AOA(Angle of Arrival) of the signal which it sends with the MS(Mobile station) from the BS(Base station), an electronic delivery time (TOA:Time of Arrival) and the relative difference of electronic arrival time from Base stations (TDOA:Time Difference of Arrival). This time the error due to a multiplex course error and near-far problem and NLOS(Non Line of Sight). We are planning to construct the Test Bed which is an error below 1 meter.

  • PDF

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (Oversized Exhaust System) (도로터널 화재시 반횡류식 환기방식에서의 최적배연 연구(대배기구 방식))

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.79-84
    • /
    • 2009
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75m/s and 2.5m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume (가연성 배기덕트-흄 화재위험성 평가에 관한 연구)

  • Yoon, Yeo-Song;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

Full-Scale Test of Smoke-Control Performance of a Subway Tunnel (지하철 본선터널 제연성능 실물 실험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Hot smoke test is done in a subway tunnel. Alcohol trays of 1.0 MW and smoke generators are used for generating hot smoke. The fans equipped with the tunnel are successively run 9 min after smoke generation. It is verified how hot smoke is controlled by fans. Velocity and direction of flow, temperature and smoke density are measured and analyzed for smoke control performance of the tunnel with fans and analyzed from the fire-safety-point of view. Velocity of smoke flow is obtained by using measured velocity and temperature at the ceiling of the tunnel. The time when smoke-control flow is builded up is different for the different positions. Velocity distributions at various positions will be used for the boundaries and the comparison data in numerical simulations for evaluation on smoke-control facilities of subway tunnel.

The Active Measure of the Operation of the Volunteer Fire Brigade in Korea (우리나라 의용소방대의 활성화 방안 고찰)

  • Jeong, Gi-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.138-142
    • /
    • 2009
  • The system of The Volunteer Fire Brigade is the Civil autonomic one which was set up from The Chosun Dynasty and has been active. Having suffered from several dificulties from Japanese control in the Chosun Dynasty, The Volunteer Fire Brigade was established by the enactment 1958 Fire Law and we have had it up to this time. The Volunteer Fire brigade played an important role in the period of the past Fire fighting personnel and equipment which we did not have. It has carried out the assistance of the Fire extinction, the early extinction of a fire in the rural region, the extinction of the forest fire, and lots of social volunteering actions etc. but, today's Fire fighting system has made the surprising developments, such as the improvement of national economic power, the increase of knowledge about the safety of the people, the openness of The Fire Fighting Department of Korea. I will try to check out the role of The Volunteer Fire Brigade which filled up the lacking part the fire fighting in the past and make the measures which can activate in these days, looking for the new field of the movement.