• Title/Summary/Keyword: fire accidents

Search Result 754, Processing Time 0.027 seconds

Study on-Gas-generating Property Of Lithium Polymer Drone batteries (리튬 폴리머 드론 배터리 방전시 이상가스에 대한 연구)

  • Jong-Heon Lee;Jae-Won Kim;Hong-Joo Yoon;Won-Chan Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.195-204
    • /
    • 2023
  • The drone's battery system uses lithium-ion or lithium-polymer batteries, and it is known that the cause of fire during the disposal process after using the drone is combustible gas from the battery being discarded. Most of the batteries in the disposal process generated oxygen, but a small amount of flammable gas was also generated, and a large amount of chlorine ions and sulfates were also detected in the equipment used for treatment. If a system that detects this early is configured, it will be possible to reduce the risk of accidents caused by discarded batteries.

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

The Effect of Psychological Characteristics of Adolescents on Life Safety Awareness (청소년의 심리적 특성이 생활안전의식에 미치는 영향)

  • Sook-hee Im;JinKyoung Lee;Jai Young Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2023
  • The purpose of this study is to explore how adolescents' psychological characteristics affect their sense of life safety according to gender. To this end, a survey was conducted on male and female high school students in six schools in the C area, and a total of 1,048 data were used for analysis. Differences in major variables according to gender were verified, and the effect of psychological characteristics on living safety awareness was analyzed through hierarchical multiple regression analysis. As a result of the analysis, depression, anxiety, type A characteristics, and the presence or absence of experience in accidents did not significantly affect life safety awareness in the male student group. On the other hand, in the female student group, anxiety and type A characteristics had a significant effect on life safety awareness. Anxiety negatively affects living safety awareness, and type A characteristics have been shown to have a positive effect on living safety awareness. The presence or absence of depression and accident experience did not significantly affect life safety awareness. The results of these studies suggest that gender differences should be considered in education to prevent life safety awareness and that education that reflects the psychological characteristics of adolescents is necessary.

A Mobile Application for Navigating the Optimal Escape Route in Accidents and Emergency Situations (모바일 어플리케이션을 이용한 재난상황 발생 시 최적 대피경로 설정)

  • Cho, Sung Hyun;Joo, Ki Don;Kang, Hoon;Park, Kyo Shik;Shin, Dong Il
    • Korean Journal of Hazardous Materials
    • /
    • v.3 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • In early 2011, the Fukushima nuclear power plant had greater damage due to earthquake in Japan, and the awareness of safety has increased. In particular, special response systems should be required to handle disaster situations in plant sites which are likely to occur for large disasters. In this study, a program is designed to set up optimum escape routes, by a smart phone application, when a disaster situation occurs. This program could get information of the cumulative damage from sensors and display the escape route of the smallest damage in real-time on the screen. Utilizing our application in real-time evacuation has advantage in reducing cumulative damage. The optimal evacuation route, focusing on horizontal path, is calculated based on getting the data of fire, detected radioactivity and hazardous gas. Thus, using our application provides information of optimal evacuation to people who even can not hear sensor alarms or do not know geography, without requiring additional costs except fixed sensors or server network deployment cost. As a result, being informed of real-time escape route, the user could behave rapidly with suitable response to individual situation resulting in improved evacuation than simply reacting to existing warning alarms.

Developing of Construction Project Risk Analysis Framework by Claim Payout and its Application

  • Kim, Ji-Myong;Park, Young Jun;Kim, Young-Jae;Yu, YeongJin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.192-194
    • /
    • 2015
  • The growing size and complex process in construction project recently leads to increase risk and the losses as well. Even though researchers have identified the major risk indicators, there is lack of comprehensive and quantitative research for identifying the relationship between the risk indicators and economic losses associated with construction projects. To address this shortage of research, this study defines risk indicators and create a framework to assess the influence of economic losses from the indicators. An insurance company's claim payout record was accepted as the dependent variable to reflect the real economic losses. Based on the claims, we categorized the causes and results of accidents. To establish framework, built environment vulnerability indicators and geographical vulnerability indicators were employed as the risk indicators. A Pearson correlation analysis was adopted to validate the relationship with loss ratio and risk indicators. Consequently, this framework and its results may offer significant references for under writers of insurance companies and loss prevention activities.

  • PDF

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels (밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구)

  • Boohyoung Bang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.56-61
    • /
    • 2023
  • The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

A Study on The Industrial Complex Disaster Surveillance and Monitoring System Using Drones (드론을 활용한 산업단지 재난감시 및 모니터링 시스템에 관한 연구)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • In this study, we introduce a system for real-time monitoring of field conditions within an industrial complex using a 5G network UAV (: Unmanned Aerial Vehicle). When a monitoring event occurs in a sensor mounted on a UAV (detection of fire, harmful gas, or industrial disaster type human accident), key information from the sensor is transmitted to the UAS (: Unmanned Aerial System) application server. As a result of this information transmission and processing, managers or operators of the Industrial Complex Corporation were able to secure legal basis data for fatal accidents, fires, and detection of harmful gases at sites within the Industrial Complex Corporation through trigger processing for each accident risk situation.

Analysis of Prevention Methods by Type of Construction Disaster Using Text Mining Techniques (텍스트마이닝을 활용한 건설현장 재해 유형별 예방 대책 분석)

  • Gyu Pil Jo;Myungdo Lee;Yoon-seok Shin;Baek-Joong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Purpose: This study provides prevention methods by type of construction disaster using text mining techniques. Method: Based on the database that analyzed the cases of critical disasters in the domestic construction sector, preventive measures and causes are analyzed by text mining techniques, and the contents of the analysis are visually shown. Result: This visual data represents the measures for preventing critical disasters of each process according to the importance. Conclusion: It is believed that the results will be helpful in identifying factors to be considered in preparing preventive measures for serious accidents in construction.

Hardware Implementation of Arc Detection Using FFT (FFT를 이용한 아크 감지 하드웨어 구현)

  • Sun Hee Kim;Yeon Ho Kang;Jeon Ho Kim;Jae Won Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.39-45
    • /
    • 2024
  • The installation of arc circuit breakers is being strengthened to prevent accidents such as electric shock and fire caused by Arc. Among arcs, serial arcs are difficult to detect with general arc detectors because there is not much change in load current when an arc occurs. Therefore, in this paper, unlike the existing Arc Fault Circuit Interrupters method, arc detection hardware is implemented using the FFT algorithm. FFT is suitable for serial arc identification because it can efficiently analyze high-frequency signals generated outside of normal AC signals. This study explains ARC detection circuits and the 2048-FFT based on radix-2 and radix-4, and presents hardware implementation results using FPGA. The implemented system detects the arc up to the frequency range of 122,880 Hz. Through simulation and FPGA board testing, it was confirmed that ARC was detected.

  • PDF

Case Study on the detailed standard setting and Application for QRA in Honam high speed railway tunnel (호남고속철도터널의 정량적 위험도 분석(QRA)을 위한 세부기준수립 및 적용사례)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Kim, Ki-Lim;Kim, Chan-Dong;Yoo, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.249-260
    • /
    • 2008
  • Although the accident rate is lower than the road tunnel, fire in railway tunnel can bring large damage of human life. In the high speed railway tunnel, the possibility of the railway-disaster (fire) is growing in consideration of the speedy railway and the tunnel length. For that reason, MLTM (Ministry of Land, Transport and Maritime Affairs) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". According to those, QRA(Quantitative Risk Analysis) technique is recommended to be applied to railway tunnel design which is longer than 1km for assuring the safety function and estimating the risk. However, it is difficult to perform the disaster prevention design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the case of tunnel design for disaster prevention of the Honam high speed railway including the detailed standards of QRA and reasonable safety facilities.

  • PDF