• Title/Summary/Keyword: fire accidents

Search Result 754, Processing Time 0.033 seconds

Development of Escape and Rescue Path-taking Method for Plant Accident Response Training (플랜트 사고 대응 훈련을 위한 탈출 및 조치 경로 설계 기법 개발)

  • Kim, Hyoung Jean;Park, Chan-Cook;Lee, Jae Yong;Lee, Chun Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • In case of plant accident, the most important measures that field operators, control-room operators and fire fighters must take are the escape from and going into the accident sites. These two different actions are reverse directional moving actions. By training operators and fire fighters with counter-accident path taking measurements, we can prevent the small accidents from becoming large-scale accidents, and can take efficient measurements in case of actual plant accidents. Out of necessities of path-taking training, in this research, we developed the escape and rescue path-taking method for plant accident response training. We can calculate the escape and rescue routes from a operator or fire fighter's current location as of accident happening and provide route data which in turn can be used as the safety training scenario. We expect this path-taking method can enhance the effectiveness and reality of escape and rescue training scenarios.

Analysis of evacuation for fishery training ship HANMIR using SEA-Pro (SEA-Pro를 이용한 어선실습선 한미르호의 피난 분석)

  • KIM, Won-Ouk;KIM, Seok-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.228-235
    • /
    • 2021
  • Marine accidents caused by ships are very diverse, such as collision, sinking, stranding, grounding and fire. In particular, persons on passenger ship are unspecified and not trained, so it makes evacuation harder. For this reason, an evacuation plan that considers diverse situation in ship is needed. Effective evacuation planning requires training in consideration of various evacuation situations. In this paper, we investigated the time elapsed on evacuation in various situations from "HANMIR," the fishery training ship of the Korean Institute of Maritime and Fisheries Technology, using a Ship Evacuation Analysis Program (SEA-Pro) which is introduced to the society. We assumed a situation that has not only inconveniences for real training but also the possibilities of happening. Not all trainees are resting in their cabin, so we assumed positions such as they are in the bridge or engine room and applied fire and flooding situations. We assumed that the time for alerting the situation would be short, so we applied only elapsed time of movement. Those analyses could be helpful in three ways. The first is predicting the consequence of possible accidents. There are some conditions that can be appliable to this model, such as the decreased area of sight in those situations. The second is concluding the optimal limit of carriage and placement of safety instruments on building a new ship. The third is to be a base data for ships to make a new effective evacuation plan based on these analyses.

Design and Implementation of Portable Electrostatic Meter Applicable to Industrial Site (산업 현장에 적용할 수 있는 휴대형 정전기 측정기 설계 및 구현)

  • Jang, Mun-Seok;Lee, Eung-Hyuk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.971-977
    • /
    • 2020
  • In this paper, We propose a portable electrostatic meter which can measure high voltage static electricity caused by friction to prevent fire or explosion accidents in grinding, crushing, power injection, transport, filling, dust removal, painting, and foreign matter removal processes. The proposed device not only shows static electricity strength in 4 steps with respect to distance and voltage but also gives warning with a buzzer, on process facilities that are likely to generate high voltage static electricity due to friction. The device is implemented by filtering the signal detected by the wireless antenna, amplifying the signal by 6 times, and passing the signal through the integrator circuit. Tests are carried out with an electrostatic discharge simulator. And the results show that 4 LEDs are turned on at the distance of 10cm, 3 LEDs at 12cm, 2 LEDs at 13cm, and 1 LED at 15cm, when a fixed voltage of 500V is given. And also, the tests show that the static electricity can be detected at 5cm on 100V, 10cm on 200V, 15cm on 500V, 20cm on 1000V, and 25cm on 1500V. We expect to reduce accidents caused by static electricity by allowing safety managers on fields where fire or explosion accidents can happen to monitor static electricity.

Method for Preventing Asphyxiation Accidents by a CO2 Extinguishing System on a Ship (선박 내 CO2 소화설비에 의한 질식사고 방지 기법)

  • Ha, Yeon-Chul;Seo, Jung-Kwan;Hwang, Jun-Ho;Im, Kichang;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2015
  • Carbon dioxide extinguishing systems are broadly used for onshore and offshore fire accidents because of excellent performance and low cost. However, there is risk with carbon dioxide systems, which have caused many injuries and deaths by suffocation associated with industrial and marine fire protection applications. In this study, a numerical analysis was performed to predict the fire suppression characteristics of a carbon dioxide system in the compressor room of ships. A double protection safety system is suggested to prevent suffocation accidents from carbon dioxide extinguishing systems. Four scenarios were selected to study the variation of the heat release rate, maximum temperature, a $CO_2$ and $O_2$ mole fraction, and fire suppression characteristics with the carbon dioxide system. The importance of proper design is suggested for a ventilation system in the compressor room of ships.

Study on Air Quality in the Case of Chemical Fires Using Proton Transfer Reaction-Time of Flight Mass Spectrometer (양자전이 비행시간 질량분석기를 이용한 화학물질 화재 발생 시 대기질 조사 연구)

  • Kim, So-Young;Cho, Dong-Ho;Park, Jungmin
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.84-90
    • /
    • 2018
  • Chemical accidents occur in various forms, such as explosions, leaks, spills, and fires. In particular, chemical accidents caused by fires seriously affect the surrounding air environment due to soot, causing anxiety to the residents. Therefore, it is important to identify the causative substances quickly and examine the influence of air quality in the surrounding area. In this paper, proton transfer reaction-time of flight mass spectrometry(PTR-ToFMS) was used to identify the causative material in a fire and monitor the air quality in real time. This analyzer is capable of real-time analysis with a rapid response time without sample collection and pretreatment. In addition, it is suitable for quantitative and qualitative analysis of most volatile organic compounds with high hydrogen affinity, to identify the cause of fire and examine the influence of ambient air. In April 2018, when a local fire occurred, methanol, acetone, and methyl ethyl ketone were the main causative agents in PTR-ToFMS.

Development of Autonomous Surface Robot for Marine Fire Safety (해양 소방 안전을 위한 자율수상로봇 개발)

  • Jeong, Jinseok;Sa, Youngmin;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2018
  • The marine industry is rapidly developing as a result of the increase in various needs in the marine environment. In addition, accidents involving ship fires and explosions and the resulting casualties are increasing. Generally, manpower and safety problems exist in fire fighting. A fire fighter in the form of an autonomous surface robot would be ideal for marine fire safety, because it has no manpower and safety problems. Therefore, an autonomous surface robot with the abilities of fire recognition and tracking, nozzle selection, position and attitude control, and fire fighting was developed and is discussed in this paper. The test and evaluation results of this robot showed the possibility of real-size applications and the need for additional studies.

A Study on the Building Plan of Chemical Management System in Laboratory Using FGI Method (FGI 기법을 이용한 연구실에서의 화학물질관리시스템 구축 방안에 관한 연구)

  • Kim, Sang-Chul;Song, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • Each country tries to prevent major industrial accidents at industrial sites, such as fire and explosion as well as poisoning incidents, and regulation of the management of chemicals is being enhanced in all sectors. In particular, in the case of laboratories, a variety of chemicals have been developed and handled in accordance with the development of science and technology. On the other hand, the accident probability at laboratories is higher than at industrial sites, because many different kinds of chemicals are handled in the laboratory but in very small amounts and chemical, physical, and biological studies have been carried out in limited spaces. Recently, the accident probability at laboratories was found to be higher as convergence/integration studies were carried out beyond the academic arena. Therefore, in this study, a survey of chemical management was conducted to prevent accidents due to chemicals targeting the laboratory safety coordinator using the FGI (focus group interview) method. The building plan of a chemical management system was suggested based on the results of the survey.

Establishment of the Fire Response Guideline for Electric Vehicleson Underground Roads (지하도로 내 전기차 화재 대응지침 구축)

  • Donghyo Kang;Seong-Woo Cho;Hae Kim;Ho-In You;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.92-107
    • /
    • 2023
  • Recently, along with the continuous increase in the supply of electric vehicles, electric vehicle fire accidents are also showing a rapidly increasing trend. Electric vehicle fires last for a long time compared to fires in internal combustion engine vehicles and have problems with the risk of secondary explosions and the generation of large amounts of smoke. In particular, electric vehicle fires in underground roads, which are semi-enclosed spaces, may amplify the problems of existing electric vehicle fires. On the other hand, there are no domestic response guidelines for electric vehicle fires occurring inside underground roads. Therefore, an awareness of fire accidents was confirmed through a survey of the general public, and electric vehicle fire characteristics and primary considerations were derived from stakeholders related to electric vehicle fires in underpasses. Through this, the guidelines for responding to electric vehicle fires on underground roads were established.

A Study on the Morbidity and the Types of Accident among the Workers of Limestone Industry (석회석 가공 산업 근로자들의 상병 상태 및 사고 유형)

  • Lee, Kyoung Hee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.8 no.1
    • /
    • pp.161-168
    • /
    • 2004
  • The workers of limestone industry have relatively higher rate of accident and injury than other industry workers. This survey was conducted to provide the informations for the planning of safety and health educations to prevent the accident and injury. The purpose of this study is to identify the morbidity rate per month and to determine the related health factors, and to find accident experiences of the limestone workers and to analyze the reasons and types of that accidents. The study design was a descriptive survey. Self reporting questionnaires developed by researcher were used for data collection. The subjects of this study were 225 workers in limestone industries in Jecheon city. The statistical methods utilized for data analysis were frequency analysis, $x^2$-test with SPSS-pc(ver.9.0). The results are as follows, 1. The workers morbidity rate per month was 22%, and morbid factors were Flu., G-I trouble, hypertension, orthopedic trauma, external wound, burn, etc., and the related health factors are self-assessment for health, exercise, accessability for medical facilities. 2. 40% of the subjects have experienced the accidents during last 6 months. The types of the accidents were safety violations, traffic accidents and fire accidents. Injury types were external wounds, fracture/amputation and burn. The workers of limestone industry have higher morbidity rate and experiences of accidents. Therefore the more increased safety and health educations than now for both the workers and the managers are needed. And this study could be helpful to increase the quality and the quantity of the educations needed.

  • PDF

A Study on the Measures for Activating the Fire Fighting Safety Education of Elementary School Students - Focusing on the Fire Fighting Science Class of Gyeonggi-do Goyang Fire Station - (초등학생 소방안전교육의 활성화 방안에 관한 연구 - 경기도 고양소방서 소방과학교실을 중심으로 -)

  • Hyun, Seong-Ho;Cha, Jeong-Min;Song, Yun-Suk;Park, Kyung-Hyo
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.67-77
    • /
    • 2009
  • The purpose of this study is to deal with fire fighting safety education primarily among the fields of child safety education. So, first of all, this study considered the theoretical background of fire fighting safety education. And this study analyzed the present state and cases of safety accidents in elementary schools. And by focusing on the fire fighting science class for elementary schools which Gyeonggi-do Goyang fire station is executing now, this study analyzed the educational outline, present state, educational goal, and content of fire fighting science class, and conducted the satisfaction survey through questionnaire over the elementary school students participating in fire fighting science class and the fire fighting officers in charge of fire fighting science class. On basis of this research, by developing the new field of fire fighting education and publicity into the program which can diffuse the fire fighting-related chemical experiment based on the science of chemistry and physics in the future and so provide the pleasure and surprise of experiencing directly not only natural fire fighting education and publicity but also learning and the common sense of fire fighting, this study tried to present the alternatives about the measures for activating the fire fighting safety education in elementary schools.