• Title/Summary/Keyword: finned tube

Search Result 159, Processing Time 0.027 seconds

An Experimental Study on the Heat Transfer Characteristics of a Finned-Tube Heat Exchanger in a PCM Thermal Energy Storage System (상변화물질을 적용한 핀-관 열교환기의 열전달 성능 특성에 관한 실험적 연구)

  • Jung, Dong Il;Chang, Min;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Phase change materials (PCM) are able to store a large amount of latent heat, and can be applied to thermal energy storage systems. In a PCM, it takes a long time to store heat in the storage system because of the low thermal conductivity. In this study, a finned-tube-in-tank heat exchanger was applied to a PCM thermal energy storage system to increase heat transfer efficiency. The effects of geometric and operating parameters were investigated, and the results were compared with those of the tube-in-tank heat exchanger. The finned-tube-in-tank heat exchanger showed higher heat transfer effectiveness than the tube-in-tank heat exchanger. The heat exchange effectiveness of the storage tank was determined as a function of the average NTU.

Experimental Study of Air-cooled Condensation in Slightly Inclined Circular Tube (경사진 원형관에서의 공냉응축에 관한 실험적 연구)

  • Kim, Dong Eok;Kwon, Tae-Soon;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, the experimental investigation of air-cooled condensation in slightly inclined circular tubes with and without fins has been conducted. In order to assess the effects of the essential parameters, variable air velocities and steam mass flow rates were given to the test section. The heat transfer performance of air-cooled condensation were dominantly affected by the air velocity, however, the increase of the steam mass flow rate gave relatively weaker effects to total heat transfer capability. And in the experimental cases with the finned tube, the total heat transfer rate of the finned tube was significantly larger than that of the flat tube. From those results, it can be confirmed that the most important parameter for air-cooled condensation heat transfer is the convective heat transfer characteristics of air. Therefore, for the well-designed long-term cooling passive safety system, the consideration of the optimal design of the fin geometry is needed, and the experimental and numerical validations of the heat transfer capability of the finned tube would be required.

Heat Transfer Characteristics of a Horizontal Fin Tube in a Fluidized Bed Combustor (유동층 연소로 내에서 수평전열관의 열전달 특성에 관한 연구)

  • 맹민재;정준기;정태용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2365-2372
    • /
    • 1995
  • The objective of this study is to get the basic data for the development of fluidized bed combustor. For this purpose, various rake angles(.theta.=20.deg., 25.deg., 30.deg., 35.deg.) of finned tubes and a smooth tube were installed horizontally in the fluidized bed combustor of 410*250mm. The effect of fluidized bed temperature, superficial velocity in bed, size of bed materials, rake angle of finned tubes on the heat transfer coefficient was experimentally investigated. The following results were obtained. (1) Under the fluidized bed temperature(750.deg. C-900.deg. C), and the gas velocity in bed(1.1-2.8m/sec), The highest heat transfer coefficient was measured with the rake angle of finned tubes was .theta.=25.deg. and .theta.=35.deg. for the average fluidized material particle size of 1.22mm and 1.54mm, respectively. Generally, the heat transfer coefficient of finned tubes is 1.4 to 2.4 times larger than that of smooth tubes. (2) The size of bed materials influences the rake angle of finned tubes which can have the highest heat transfer coefficient. As the temperature in bed gets higher, the effect of the rake angle of finned tubes on the heat transfer coefficient becomes greater.

A study on the performance of the finned tube heat exchanger affected by the frosting using CFD tool (전산해석을 이용한 착상이 핀튜브 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Sung-Jool;Choi, Ho-Jin;Ha, Man-Yeong;Bang, Seon-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2738-2743
    • /
    • 2008
  • We conducted a study by computational simulation about the effects of frost thickness on the pressure drop and heat transfer characteristics as whole heat exchanger configuration changes. In order to perform the analysis for validation, we assumed that frost properties have constant values and the frost layers that are formed on the fin and tube surfaces are uniform. In order to find the constant thermal conductivity of frost layer, a variety of frost thermal conductivities are performed in our work and compared with the results by Lee et al. [4] and Yang et al. [5] proposed many experimental data about the 2-rows and 2-columns finned tube heat exchanger. The numerical results agreed well with the experimental data when frost conductivity is 0.07W/mK. After the validation had performed, we applied this procedure to the finned tube heat exchanger of domestic refrigeration and investigated the thermo-hydraulic characteristic of the heat exchanger affected by frost thickness according to the inlet velocities and temperatures of air considering the configuration change such as fin pitch.

  • PDF

Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with a Variation of Fin Pitch and Number of Tube Row (핀-튜브 열교환기의 핀피치 및 열수 변화에 따른 열전달 성능특성에 관한 연구)

  • Kim Yong-Han;Lee Ho-Seong;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.930-937
    • /
    • 2005
  • The objective of this study is to investigate the heat transfer performance of flat plate finned-tube heat exchangers with large fin pitch. In this study, twenty-two heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The staggered tube alignment improved heat transfer performance more than $10\%$ compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of $3.6\%\;and\;6.4\%$ for the inline and staggered tube alignment, respectively.

Study on Heat Transfer Characteristic of Shell-and-Tube Heat Exchanger with Plate Fin (판형 핀을 가진 원통-다관형 열교환기의 열전달 특성에 관한 연구)

  • Lim, Tae-Woo;Cho, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this work, the experimental investigation was carried out to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube heat exchanger with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. Mass flow rate was varied from 1.2 to $6.0\;m^3/h$ for oil and from 0.6 to $3.0\;m^3/h$ for cold water, respectively. From the experiment of shell-and-plate finned tube heat exchanger, the overall heat transfer coefficient of heat exchanger with 9 tubes was compared with that of 13 and 19 tubes. It was found that the heat transfer coefficients in shell side of heat exchanger with 9 plate finned tubes showed averagely 1.8 times and 2.3 times higher than those of 13 and 19 tubes, respectively.

Air-side flow and heat transfer for a two-row lanced finned tube heat exchanger (2열 절개형 핀-관 열교환기의 공기측 유동 및 열전달 특성)

  • Bae, Jin-Hyo;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.79-92
    • /
    • 1998
  • A numerical study has been performed to obtain the air-side flow and heat transfer characteristics for a two-row lanced finned tube heat exchanger with 7 mm tube outer diameter. The increases of dimensionless local heat flux at the leading edge of slit and bottom surface of the fin were noticed. The temperature of air at downstream of the 2nd row of the lanced fin becomes more uniform than that of the plain fin because the mixing of energy increases by the slit and the side-slit. As the inlet velocity increases, the contribution of the 1st row to heat transfer decreases and that of 2nd row increases.

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

An Exprimental Study on the Heat Transfer Performance in a Fluidized Bed Double Pipe Heat Exchanger (수직이중관식(垂直二重管式) 유동층형(流動層形) 열교환기(熱交換器)의 전열성능(傳熱性能)에 관한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.39-50
    • /
    • 1994
  • Experiments have been conducted to measure the heat transfer coefficient and pressure drop in fluidized bed double pope heat exchangers with smooth tube and longitudinal finned tube. The effect of particle size(alumina beads; do=0.41, 0.54, 0.65, 0.77 mm) and static bed height on the heat transfer coefficient has been evaluated in terms of pumping power. The heat transfer coefficient for the smooth tube and finned tube heat exchangers has been compared with single phase double pipe heat exchanger. Results show that the heat transfer coefficients for the finned tube in $2.96{\sim}3.45$ times higher than the smooth tube. The heat transfer coefficients for the fluidized bed heat exchanger is higher than the single phase heat exchanger for the most of pumping power range tested. The maximum increase in the heat transfer coefficient for fluidized bed is 91.3% for the smooth tube and 127.1% for the finned tube.

  • PDF