• Title/Summary/Keyword: finite-element numerical modeling

Search Result 772, Processing Time 0.029 seconds

Numerical modeling of dynamic compaction process in dry sands considering critical distance from adjacent structures

  • Pourjenabia, Majid;Hamidi, Amir
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Dynamic compaction (DC) is a useful method for improvement of granular soils. The method is based on falling a tamper (weighting 5 to 40 ton) from the height of 15 to 30 meters on loose soil that results in stress distribution, vibration of soil particles and desirable compaction of the soil. Propagation of the waves during tamping affects adjacent structures and causes structural damage or loss of performance. Therefore, determination of the safe or critical distance from tamping point to prevent structural hazards is necessary. According to FHWA, the critical distance is defined as the limit of a particle velocity of 76 mm/s. In present study, the ABAQUS software was used for numerical modeling of DC process and determination of the safe distance based on particle velocity criterion. Different variables like alluvium depth, relative density, and impact energy were considered in finite element modeling. It was concluded that for alluvium depths less than 10 m, reflection of the body waves from lower boundaries back to the soil and resonance phenomenon increases the critical distance. However, the critical distance decreases for alluvium depths more than 10 m. Moreover, it was observed that relative density of the alluvium does not significantly influence the critical distance value.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • Jung, D.H.;Park, H.I.;Koterayama, W.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

An efficient C1 beam element via multi-scale material adaptable shape function

  • El-Ashmawy, A.M.;Xu, Yuanming
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.351-368
    • /
    • 2022
  • Recently, promising structural technologies like multi-function, ultra-load bearing capacity and tailored structures have been put up for discussions. Finite Element (FE) modelling is probably the best-known option capable of treating these superior properties and multi-domain behavior structures. However, advanced materials such as Functionally Graded Material (FGM) and nanocomposites suffer from problems resulting from variable material properties, reinforcement aggregation and mesh generation. Motivated by these factors, this research proposes a unified shape function for FGM, nanocomposites, graded nanocomposites, in addition to traditional isotropic and orthotropic structural materials. It depends not only on element length but also on the beam's material properties and geometric characteristics. The systematic mathematical theory and FE formulations are based on the Timoshenko beam theory for beam structure. Furthermore, the introduced element achieves C1 degree of continuity. The model is proved to be convergent and free-off shear locking. Moreover, numerical results for static and free vibration analysis support the model accuracy and capabilities by validation with different references. The proposed technique overcomes the issue of continuous properties modelling of these promising materials without discarding older ones. Therefore, introduced benchmark improvements on the FE old concept could be extended to help the development of new software features to confront the rapid progress of structural materials.

Development of an Accurate Numerical Model for Density-Dependent Groundwater Flow and Solute Transport (밀도가 변하는 지하수흐름과 용질의 수송을 위한 정확한 수치모델의 개발)

  • Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.753-759
    • /
    • 1997
  • A new numerical model was doveloped to simulate density-dependent ground water flow and solute transport. Accuracy of a numerical model depends upon how well it simulates advection dominant situations because numerical oscillations can spoil solutions for these situations. Nonlinear oscillation-absorption finite element method. based on the variational principle, was employed. Unlike previous numerical models, this model can easily be expanded for more complex situations. Accuracy of the model is evaluated by comparing with analytical solutions and results of other numerical model.

  • PDF

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

A Study on Grid Effect and Applicability of Composite Reinforcement (그리드효과 및 복합보강재의 적용성에 관한 연구)

  • 김홍택;이형규;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.95-104
    • /
    • 1999
  • In this study, laboratory pull-out tests and finite element modeling are carried out focused on the grid effects of geogrid and the analyses of friction characteristics associated with interaction behaviors of the composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects due to the geotextile.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Failure Study for Knee Joint Through 3D FE Modeling Based on MR Images (자기공명영상 기반 3차원 유한요소모델링을 통한 무릎관절의 파손평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Seong-Geun;Park, Sang-Jin;Jeon, In-Su;Song, Eun-Kyoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.533-539
    • /
    • 2009
  • In this study, the femur, the tibia, the articular cartilage and the menisci are three dimensionally reconstructed using MR images of healthy knee joint in full extension of 26-year-old male. Three dimensional finite element model of the knee joint is fabricated on the reconstructed model. Also, the FE models of ligaments and tendons are attached on the biologically suitable position of the FE model. Bones, articular cartilages and menisci are considered as homogeneous, isotropic and linear elastic materials, and ligaments and tendons are modeled as truss element and nonlinear elastic springs. The numerical results show the contact pressure and the von Mises stress distribution in the soft tissues such as articular cartilages and menisci which can be regarded as important parameters to estimate the failure of the tissues and the pain of the patients.

Dynamic Analysis of Design Data for Structural Lap Joint (LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.57-74
    • /
    • 1998
  • This paper is concerned with a combination of experimental and analytical investigation aimed at identifying modeling errors, accounted for the lack of correlation between experimental measurements and analytical predictions of the modal parameters for lap joint panels. A nonlinearity vibration test methodology, initiated from the theoretical analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the rivet fastener. Based on the experimental evidence on discrepancies between measured and predicted frequencies, improved finite element models of the joint are developed using PATRAN and ABAQUS, in which the beam element size is evaluated from the joint stiffnesses readily determined in the test. The beam element diameter as a principal design parameter is tuned to match experimental results within the evaluated bound value. Frequencies predicted by the proposed numerical model are compared with frequencies measured by the test. Improved predictions based on this new model are observed when compared with those based on conventional modeling practices.

  • PDF