• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.033 seconds

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

Finite Element Modeling Method for SRM Design (SRM 설계를 위한 유한 요소 모델링 기법)

  • Bae, Jae-Nam;Lee, Sung-Gul;Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.586-592
    • /
    • 2018
  • SRMs are difficult to design using a simple mathematical model and, consequently, numerical analysis based characteristics analysis is used including drive circuits. In this process, it is necessary to analyze the trends according to the change of the design factors, however, many of the design factors affect each other. In order to shorten the design time and achieve a proper design, a modeling technique based on the design parameters is needed. For this purpose, this paper summarizes the formulas employed for shape modeling by minimizing the number of major design factors of the SRM, and proposes a methodology for SRM design using these formulas. In particular, we propose a design method for a 6/4-pole model, one which has been studied for a long time, and showed an example of a design produced by the proposed method.

Finite Element Modeling of Geogrid-encased Stone Columns in Soft Clay (지오그리드 보강 쇄석 말뚝 공법의 유한요소해석 모델링)

  • Yoo, Chung-Sik;Song, Ah-Ran;Lee, Dae-Young;Kim, Sun-Bin;Park, Si-Sam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • This study presents a modeling approach for geogrid-encased stone column(GESC) method which is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquefaction resistance, among others. Recently, geosynthetic-encased stone column approach has been developed to improve load carrying capacity through increasing confinement effect. The aim of this research is to establish a systematic approach for modeling of GESC and to form a database for the fundamentals of GESC. This paper presents details of 3D modeling of GESC together with the general behavior of GESC.

  • PDF

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Bond graph modeling approach for piezoelectric transducer design (압전 트랜스듀서 설계를 위한 bond graph 모델링)

  • 문원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.265-271
    • /
    • 1997
  • A bond graph modeling approach which is equivalent to a finite element method is formulated in the case of the piezoelectric thickness vibrator. This formulation suggests a new definition of the generalized displacements for a continuous system as well as the piezoelectric thickness vibrator. The newly defined coordinates are illustrated to be easily interpreted physically and easily used in analysis of the system performance. Compared to the Mason equivalent circuit model, the bond graph model offers the primary advantage of physical realizability. Compared to circuit models based on standard discrete electrical elements, the main advantage of the bond graph model is a greater physical accuracy because of the use of multiport energic elements. While results are presented here for the thickness vibrator, the modeling method presented is general in scope and can be applied to arbitrary physical systems.

  • PDF

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.176-182
    • /
    • 2006
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

Solid Modeling of UBM and IMC Layers in Flip Chip Packages (플립칩 패키지에서 UBM 및 IMC 층의 형상 모델링)

  • Shin, Ki-Hoon;Kim, Joo-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.181-186
    • /
    • 2007
  • UBM (Under Bump Metallurgy) of flip chip assemblies consists of several layers such as the solder wetting, the diffusion barrier, and the adhesion layers. In addition, IMC layers are formed between the solder wetting layers (e.g. Cu, Ni) and the solder. The primary failure mechanism of the solder joints in flip chips is widely known as the fatigue failure caused by thermal fatigues or electromigration damages. Sometimes, the premature brittle failure occurs in the IMC layers. However, these phenomena have thus far been viewed from only experimental investigations. In this sense, this paper presents a method for solid modeling of IMC layers in flip chip assemblies, thus providing a pre-processing tool for finite element analysis to simulate the IMC failure mechanism. The proposed modeling method is CSG-based and can also be applied to the modeling of UBM structure in flip chip assemblies. This is done by performing Boolean operations according to the actual sequences of fabrication processes

Magnetic Characteristic Analysis of Permanent Magnet Motor with Complex E&S Modeling

  • Zeze, Shingo;Todaka, Takashi;Enokizono, Masato
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • This paper presents analyzed results of a permanent magnet motor by using complex E&S modeling. The calculated results are compared with ones from the conventional E&S modeling for verification. Combinations of the numbers of slots and poles are investigated to reduce total iron loss. The results demonstrate that the complex E&S modeling is very useful in design under consideration of rotational magnetic field and magnetic anisotropy.

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.708-713
    • /
    • 2005
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper. Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. Stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

  • PDF