• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.04 seconds

A Three-Dimensional Finite Element Model of Water Circulation (물의 순환에 관한 3차원 유한요소 모형)

  • 정태성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • A three-dimensional numerical model of water circulation has been developed. The model employs the equations on $\sigma$-coordinate and the finite element method for numerical integration. To verify accuracy of the model, a series of numerical experiments have been conducted. The experiments include wind-driven currents in an one-dimensional channel, wind-driven currents in a square lake, and tidal current distributions in Masan-Jinhae Bay. The simulation results showed good agreements with the analytic solutions for wind-driven current and the field data sets in Masan-Jinhae Bay. The model can be used widely for modeling of water circulation in the waters with a complex geometry.

  • PDF

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

Finite Element Modeling of Rubber Pad Forming Process (고무 패드 성형 공정의 유한요소 모델링)

  • 신수정;이태수;오수익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber (공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석)

  • Hong, Sa-Young;Kyoung, Jo-Hyun;Kim, Byoung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

An Automatic Data Generation Procedure for Finite Element Structural Analysis of Cargo Holds of a Ship (선체중앙부 유한요소 구조해석을 위한 입력자동화)

  • S.W. Park;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.99-108
    • /
    • 1994
  • As a consequent result of our previous paper, "Development of Automatic Data Generation Program for Finite Element Structural Analysis of Oil Tankers"[1], the objective of this paper is to develop an automatic modeling program for the three-dimensional finite element structural analysis of hull modules of general commercial ships, especially oil tankers, bulk carriers, and container ships. Based on the proposed algorithm in [1], the followings are newly added: general applicability for three ship types, automatic mesh division interface with MSC/NASTRAN, direct wave load calculation interface, and Graphic User Interface technology in the process of input data preparation. The usefulness of this procedure is verified by calculation examples. examples.

  • PDF

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.;Gomes, Renan R.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.269-281
    • /
    • 2019
  • This work addresses a three-dimensional nonlinear structural analysis of the constructive phases of a cable-stayed segmental concrete bridge using The Finite Element Method through ANSYS, version 14.5. New subroutines have been added to ANSYS via its UPF customization tool to implement viscoelastoplastic constitutive equations with cracking capability to model concrete's structural behavior. This numerical implementation allowed the use of three-dimensional twenty-node quadratic elements (SOLID186) with the Element-Embedded Rebar model option (REINF264), conducting to a fast and efficient solution. These advantages are of fundamental importance when large structures, such as bridges, are modeled, since an increasing number of finite elements is demanded. After validating the subroutines, the bridge located in Rio de Janeiro, Brazil, and known as "Ponte do Saber" (Bridge of Knowledge, in Portuguese), has been numerically modeled, simulating each of the constructive phases of the bridge. Additionally, the data obtained numerically is compared with the field data collected from monitoring conducted during the construction of the bridge, showing good agreement.

Simplification analysis of suction pile using two dimensions finite element modeling

  • Hendriyawan, Hendriyawan;Primananda, M. Abby;Puspita, Anisa Dwi;Guo, Chao;Hamdhan, Indra Noer;Tahir, M.M.;Pham, Binh Thai;Mu'azu, M.A.;Khorami, Majid
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2019
  • This paper presents the results of parametric analyses to compute the axial capacity of a suction pile using 2D and 3D finite element approaches. The study is intended to simplify the process of analyzing suction piles from 3D to 2D model. The research focuses on obtaining the coefficient to be applied into the 2D model in order to obtain results that are as close as possible to the 3D model. Two 2D models were used in the analysis, namely the plane strain and axisymmetric models. The analyses were performed using two actual offshore soil data of the North and West Java Indonesia. The study reveals that the simplification of model through 2D Finite Element is achievable by applying the appropriate coefficient to the stiffness parameters. The results show that the simplified model of the 2D FEA provides more conservative results (with the difference between 2% to 7%) than the 3D FEA.

Construction of Abalone Sensory Texture Evaluation System Based on BP Neural Network

  • Li, Xiaochen;Zhao, Yuyang;Li, Renjie;Zhang, Ning;Tao, Xueheng;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.790-803
    • /
    • 2019
  • The effects of different heat treatments on the sensory characteristics of abalones are studied in this study. In this paper, the sensory evaluation of abalone samples under different heat treatment conditions is carried out, and the evaluation results are analyzed. The three-dimensional (3D) scanning and reverse engineering are used in tooth modeling of the sensory evaluation of abalone samples under different heat treatment conditions. Besides, the chewing movement models are simplified into three modes, including the cutting mode, compressing mode and grinding mode, which are simulated using finite element simulation. The elastic modulus of the abalone samples is obtained through the compression testing using a texture analyzer to distinguish their material properties under different heat treatments and to obtain simulated mechanical parameters. Finally, taking the mechanical parameters of the finite element simulation of abalone chewing as input and sensory evaluation parameters as the output, BP neural network is established in which the sensory texture evaluation model of abalone samples is obtained. Through verification, the neural network prediction model can meet the requirements of food texture evaluation, with an average error of 9.12%.