• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.034 seconds

3-D Traveltime and Amplitude Calculation using High-performance Parallel Finite-element Solver (고성능 병렬 유한요소 솔버를 이용한 3차원 주시와 진폭계산)

  • Yang, Dong-Woo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.234-244
    • /
    • 2004
  • In order to calculate 3-dimensional wavefield using finite-element method in frequency domain, we must factor so huge sparse impedance matrix. Because of difficulties of handling of this huge impedance matrix, 3-dimensional wave equation modeling is conducted mainly in time domain. In this study, we simulate the 3-D wavefield using finite-element method in Laplace domain by combining high-performance parallel finite-element solver and SWEET (Suppressed Wave Equation Estimation of Traveltime) algorithm which can calculate the traveltime and the amplitude. To verify this combination, we applied it to the SEG/EAGE 3D salt model in serial and parallel computing environments.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

The application of geometrically exact shell element to NURBS generated by NLib (기하학적으로 정확한 쉘 요소의 NLib에 의해 생성된 NURBS 곡면에의 적용)

  • Choi Jin-Bok;Oh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.301-308
    • /
    • 2005
  • In this study, we implement a framework that directly links a general tensor-based shell finite element to NURBS geometric modeling. Generally, in CAD system the surfaces are represented by B-splines or non-uniform rational B-spline(NURBS) blending functions and control points. Here, NURBS blending functions are composed by two parameters defined in local region. A general tensor-based shell element also has a two-parameter representation in the surfaces, and all the computations of geometric quantities can be performed in local surface patch. Naturally, B-spline surface or NURBS function could be directly linked to the shell analysis routine. In our study, we use NLib(NURBS libraray) to generate NURBS for shell finite analysis. The NURBS can be easily generated by interpolating or approximating given set of data points through NLib.

  • PDF

Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method (유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측)

  • Choi, Min-Shik;Kang, Beom-Soo;Yum, Jong-Taek;Park, Noh-Kwang
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation in Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.211-214
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

A Comparison Study on Load Distribution Behavior of Steel Box Girder Bridge (강상자형 교량의 하중분배 거동에 대한 비교 연구)

  • 나준호;정광모;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.313-321
    • /
    • 1999
  • To design steel box girder bridge, designers have taken the classical load distribution coefficient methods. Due to the rapidly developing computer technique, steel box girder bridge is simply modeled as grillage method for analyzing the girder, or as fully finite element method for more accurate and detailed analysis. Recently, cruciform space frame method is developed for modeling and analyzing it more simply and easily compared with finite element method. So, this study for the examination of upper methods' characteristics loaded unit moment load and analyzed the distortional deflection with shell element method and cruciform space frame method, and for three span three girder steel box bridge, loading DB-24 loads, analyzed it by upper methods and compared the results.

  • PDF

A Study on the Design of Ratchet Wheel Using Automatic Design Program and Finite Element Analysis (자동설계프로그램과 유한요소법을 활용한 래칫 휠 설계에 관한 연구)

  • Kim, Min-Ju;Lee, Seung-Su;Jeon, Eon-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1882-1887
    • /
    • 2002
  • This study is to develop a automatic design program of mechanical elements as the integrated system which can create automatically 3-dimensional solid and surface model using visualLISP. By the applying developed system to CAE system, the following objects are realized. At first, constructing the library of automatic design program for unexperienced design engineer, the 3-dimensional modeling of mechanical elements can be obtained easily. at second, the 3-dimensional model for ratchet wheel design is created by finete element model of CAE system and the optimal design condition of key way.

Finite Element Modeling of the Basilar Membrane in Cochlea (달팽이관내 기저막의 유한요소 모델링)

  • 강희용;양성모;김봉철;임재중;용부중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.114-119
    • /
    • 2002
  • Cochlea is well known to have the ability to analyze a wide frequency and this ability seems to be caused to the Basilar Membrane(BM) configuration. However, the relationship between the Cochlea frequency-position map is not clear. In this paper, the three-dimensional BM Model was made using the Finite Element Method. Then an attempt was made to examine the influence of the BM configuration on the Cochlea frequency-position map. Theoretical consideration reveals that the wide frequency-position of Cochlea is achieved by not only the BM configuration change along the length of the Coohlea but also the change of the Young's module of the BM along the length of the Cochlea.