• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.029 seconds

The effect of mechanical properties of bone in the mandible, a numerical case study

  • Ramos, Antonio;Marques, Hugo;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2014
  • Bone properties are one of the key components when constructing models that can simulate the mechanical behavior of a mandible. Due to the complexity of the structure, the tooth, ligaments, different bones etc., some simplifications are often considered and bone properties are one of them. The objective of this study is to understand if a simplification of the problem is possible and assess its influence on mandible behavior. A cadaveric toothless mandible was used to build three computational models from CT scan information: a full cortical bone model; a cortical and cancellous bone model, and a model where the Young's modulus was obtained as function of the pixel value in a CT scan. Twelve muscle forces were applied on the mandible. Results showed that although all the models presented the same type of global behavior and proximity in some locations, the influence of cancellous bone can be seen in strain distribution. The different Young's modulus defined by the CT scan gray scale influenced the maximum and minimum strains. For modeling general behavior, a full cortical bone model can be effective. However, when cancellous bone is included, maximum values in thin regions increase the strain distribution. Results revealed that when properties are assigned to the gray scale some peaks could occur which did not represent the real situation.

Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

  • Rao, K. Balaji;Anoop, M.B.;Kesavan, K.;Balasubramanian, S.R.;Ravisankar, K.;Iyer, Nagesh R.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.411-440
    • /
    • 2013
  • Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

  • Tourab, Wafa;Babouri, Abdesselam
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • Background: This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods: Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. Results: The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

Modern computer simulation for the design of concrete catenary shell structures

  • Lee, Joo Hong;Lee, Hyerin;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.661-667
    • /
    • 2018
  • The purpose of this study was to model and design a concrete catenary shell using a modern computer program without performing experiments. The modeling idea stems from the study by Pendergrast, but he listed supplementary items that should be improved in his paper. This study aims to resolve those issues and overcome the drawbacks of the study by Pendergrast. The process of experiment for the design of a catenary shell was reproduced by Grasshopper script. In order to ensure credibility, two models designed from the Grasshopper script were analyzed using a finite element program, SAP2000; one is a square-based catenary shell and the other is a special catenary shell called as the Naturtheater $Gr{\ddot{o}}tzingen$ shell, which was completed in 1977. First, the developed modeling approach was proved to be reasonable from the analysis of the square-based shell. The reliability was further confirmed by a comparison between the current and previous analysis results for the Naturtheater $Gr{\ddot{o}}tzingen$ shell.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim;Hee-Hwan Ryu;Meiyan Kang;Suyoung Choi;Song-Hun Chong
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.