• 제목/요약/키워드: finite-element modeling

Search Result 2,200, Processing Time 0.028 seconds

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • Moghadam, Amir Ali Amiri;Kouzani, Abbas;Zamani, Reza;Magniez, Kevin;Kaynak, Akif
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1601-1623
    • /
    • 2015
  • Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

Structural Safety Evaluation of Tomb of King Muryeong in Tumulis of Songsan-ri Through Finite Element Analysis (유한요소해석을 통한 송산리고분군 무령왕릉의 구조안전성 평가)

  • Lee, Ga-Yoon;Jo, Young Hoon;Lee, Sung-Min;Lee, Chan Hee;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Tomb of King Muryeong, located in Sonsan-ri, was found vulnerable due to leakages during since the summer of 2016. This research aims to evaluate structural safety of the Tomb under the tumulus. Site surveys were conducted to find vulnerable inner parts. Structural safety assessment is presented based on both site survey results and analytical results obtained through FEM analysis using the ANSYS program. The underground structure was explicitly modeled to focus on two types of loadings: design loads and actual gravity loads. In general, the tomb does not show any critical deflection increase or damage through the analytical investigation. However, maintenance through continuous monitoring is necessary to prevent severe deflections and stress concentrations since the rigidity of the tomb materials are very vulnerable and likely to be reduced due to prolonged weathering and continuous rain leakage.

An Impact Analysis of Adhesively-Bonded Single Lap Joint (단면 겹치기 접착 조인트의 충돌해석)

  • Lee, Ju-Won;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.172-177
    • /
    • 2010
  • This study presents an explicit dynamic analysis of an adhesively bonded single-lap joint under an impact load. The finite element software, ANSYS LS-DYNA, was used for the analysis and Von Mises stresses were obtained from the analysis. To model the adherents, solid elements were used and a rigid body was assumed for impactor modeling. Three impact heights (1 m, 5 m, and 10 m) were applied to consider different impact conditions and infinite boundary conditions were applied to the end-area of each adherent to save computational time in the analysis. In addition to investigating the stresses in the normal state, we also investigated the stresses in a damaged state (elasticity deterioration), simulated by a change in Young's modulus for 36 of the 3600 elements in the upper layer of the adhesive. The results showed that the location of damage is critical to the stress state of each layer (upper, middle, and lower).

Novel Design of Two-Phase PM Vibration Motor Used for Cell-Phones (새로운 형태의 휴대폰용 2 상 진동모터의 설계)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-223
    • /
    • 2008
  • Cell-phone becomes a necessary communication device in modern society. However, a paging signal by a sound transducer often acts as an unpleasant noise, thus necessitating a paging signal by a vibration motor. The conventional flat type vibration motor uses three-phase windings with three phase coils. In this article, a new design of a vibration motor using a V connection with two phase coils is presented, increasing mass productivity. For electromagnetic field analysis, due to the motor symmetry, two-dimensional modeling can be implemented for fast computation, and performance is predicted by the finite element method. The winding distribution angle turns out to be the most important design parameter for the elimination of dead points, and a new coil configuration is suggested which has no adverse effect on motor size and weight. Experimental tests of vibration confirm the validity of the proposed design.

  • PDF

Behavior of Dry-stone Segmental Retaining Wall Using Physical Modeling and Numerical Simulation (모형시험과 수치해석을 이용한 조적식 석축옹벽의 거동 특성)

  • Kim, Seong-Su;Mok, Young-Jin;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.25-36
    • /
    • 2011
  • The behavior of the dry-stone masonry retaining structure has been investigated via physical model test and numerical simulation. In the model test, the digital image analysis using PIV technique was employed to measure horizontal displacements in the backfill soils and retaining blocks. For finite element numerical analyses, the commercial code, ABAQUS, was used. The horizontal displacements observed in the model test showed that the development of the failure surface is progressive. Numerical results showed that in most cases horizontal earth pressure is distributed similarly to a conventional Rankine’s distribution. However, lower values of the internal friction angle of the backfill soils and interface friction angle in the front blocks produce irregularly nonlinear distribution of the horizontal earth pressure.

The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts

  • Cho, Won-Il;Park, Eun-Ji;Cheon, Hee Soon;Chung, Myong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of $F_0$ among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and $F_0$ were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% ($R^2=0.975$). The changes in nodal temperature and $F_0$ caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.

A Study on the Finite Element Analysis in Friction Stir Welding of Al Alloy (알루미늄 합금재의 마찰교반용접 유한요소해석에 관한 연구)

  • Lee, Dai Yeal;Park, Kyong Do;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.81-87
    • /
    • 2015
  • In this paper, the finite element method was used for the flow and strength analysis of aluminum alloy under friction stir welding. The simulations were carried out using Sysweld s/w, and the modeling of the sheet was executed using Unigraphics NX6 s/w. The welding variables for the analysis were the shoulder diameter, rotating speed, and welding speed of the tool. Additionally, a three-way factorial design method was applied to confirm the effect of the welding variables on the flow and strength analysis with variance analysis. From these results, the rotating speed had the greatest influence on the maximum temperature, and the maximum temperature was $578.84{\pm}12.72$ at a confidence interval of 99%. The greater the rotating speed and shoulder diameter, the greater the difference between maximum and minimum temperature. Furthermore, the shoulder diameter had the largest influence on von Mises stress, and the von Mises stress was $184.54{\pm}12.62$ at a confidence interval of 99%. In addition to the increased shoulder diameter, welding speed, and rotating speed of the tool increased the von Mises stress.

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

Mathematical Model of Hard Disk Drive Actuator System (하드디스크 드라이브 액추에이터 시스템의 수학적 모델)

  • Gwon, Sun-Eok;Park, No-Yeol;Kim, Jun-O;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3080-3087
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system the system response data of the finite element analysis or experimental results. The model is base on the Rayleigh-Ritz method to approximate the dynamic response of the actuator system. The basic idea is to use the curve-fit technique to obtain the approximation coefficients. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system of the system are affected somewhat by the structural modification and the change of the material properties, we can use the modified size and dynamic properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.