• Title/Summary/Keyword: finite volume scheme

Search Result 333, Processing Time 0.026 seconds

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

Hybrid-QUICK Scheme Using Finite-Volume Method

  • Choi, Jung-Eun
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.57-67
    • /
    • 1996
  • The formulation for hybrid-QUICK scheme of convective transport terms in finite-volume calculation procedure is presented. Source terms are modified to apply the hybrid-QUICK scheme. Test calculations are performed for wall-driven cavity flow at Re=$10_2$, $10_3$, and $10_4$. These include the evaluation of boundary conditions approximated by third-order finite difference scheme. The stable and converged solutions are obtained without unsteady terms in the momentum equations. The results using hybrid-QUICK scheme show no difference with those using hybrid scheme at low Re ($=10_2$) and are better at higher Re ($10_3$, and $10_4$).

  • PDF

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

Transient Radiative Heat Transfer Using Finite Volume Method with 2-Order Upwind Scheme and QUICK Scheme (비정상상태 복사열전달 해석을 위한 2 차 상류스킴 및 QUICK 스킴의 유한체적복사해법 적용 연구)

  • Byun, Do-Young;Lee, Gun-Ho;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1294-1299
    • /
    • 2004
  • Transient radiative heat transfer is analyzed in a one-dimensional slab using finite volume method (FVM). In this study, the step, $2^{nd}$ order upwind, and QUICK schemes are used for incident diffuse radiation and collimated beam, respectively. The results for diffuse radiation show that all schemes applied in this study give good agreements with available published results. In case of collimated beam, however, the results show deviations from the analytical solutions. To successfully describe the propagations of collimated beam, shock capturing schemes such as TVD scheme are need to be developed.

  • PDF

1- Dimensional Transient Radiative Heat Transfer Using Finite Volume Method with 2-Order Upwind Scheme and QUICK Scheme (1차원 비정상상해 복사열전달 해석을 위한 2차 상류스킴 및 QUICK 스킴의 유한체적복사해법 적용 연구)

  • Lee Gun-Ho;Kim Man-Young;Byun Do-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.201-207
    • /
    • 2006
  • Transient radiative heat transfer is analyzed in a one-dimensional slab using finite volume method (FVM). In this study, the step, $2^{nd}$ order upwind, and QUICK schemes are used for incident diffuse radiation and collimated beam, respectively. The results fer diffuse radiation show that all schemes applied in this study give good agreements with available published results. In case of collimated beam however, the results show deviations from the analytical solutions. To successfully describe the propagations of collimated beam shock capturing schemes such as TVD scheme are need to be developed.

Numerical Simulation of Laminar Reacting Flows Using Unstructured Finite Volume Method With Adaptive Refinement

  • Kang, Sung-Mo;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • A pressure-based, unstructured finite volume method has been applied to couple the chemical kinetics and fluid dynamics and to capture effectively and accurately the steep gradient flame field. The pressure-velocity coupling is handled by two methodologies including the pressure-correction algorithm and the projection scheme. A stiff, operator-split projection scheme for the detailed nonequilibrium chemistry has been employed to treat the stiff reaction source terms. The conservative form of the governing equations are integrated over a cell-centered control volume with collocated storage for all transport variables. Computations using detailed chemistry and variable transport properties were performed for two laminar reacting flows: a counterflow hydrogen-air diffusion flame and a lifted methane-air triple flame. Numerical results favorably agree with measurements in terms of the detailed flame structure.

  • PDF

A Locally Linear Reconstruction scheme on arbitrary unstructured meshes (임의의 비정렬 격자계에서의 국지적 선형 재구성 기법)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

A Study on the Level-Set Scheme for the Analysis of the Free Surface Flow by a Finite Volume Method (유한체적법에 의한 자유수면 유동해석에서 Level-Set 기법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.40-49
    • /
    • 1999
  • A Finite Volume Method for the two-dimensional incompressible, two-fluids Navies-Stokes equation and level-set scheme are used to analyse the interface of two fluids, free-surface flow. The numerical characteristics and the applicability of level-set scheme are brief1y investigated and appraised by solving oscillating small surface wave in a water tank and dam break problems. In the numerical results, a method for improving the convergence of the solution is presented.

  • PDF