• 제목/요약/키워드: finite spectral method

검색결과 148건 처리시간 0.031초

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석 (Analysis of the Magnetic Force and Torque of a Rotatory Two-Phase Transverse Flux Machine)

  • 박남기;장정환;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.829-835
    • /
    • 2006
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced vibration due to its inherent structure. This paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

  • PDF

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.14-24
    • /
    • 2015
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

Compressible Parabolized Stability Equation in Curvilinear Coordinate System and integration

  • Gao, Bing;Park, S.O.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.155-174
    • /
    • 2006
  • Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.49-56
    • /
    • 2014
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

다중모드 간섭결합기와 광도파로열로 구성된 저손실 NxN광도파로 격자 파장 라우터의 설계 (Design of a low loss NxN waveguide grating router composed of multimode interference couplers and arrayed waveguide grating)

  • 문성욱;정영철
    • 전자공학회논문지D
    • /
    • 제34D권7호
    • /
    • pp.79-87
    • /
    • 1997
  • Untill now, the most well-known cofiguration for waveguide grating router(WGR) is composed of radiative star couplers and arrayed waveguide grating(AWG), which usually suffer form the rdiation loss of around 3dB or more. Therefore, te improved design of WGRs is needed to reduce the loss. In ths paper, we propose a novel WGR composed of multimode interference couplers which have good unifiormity, fabrication tolerance, and very low excess loss, and suggest the efficient algorithm to find the proper path length differences of AWG for given channel spacing and channel assignment to each output prot. The simulated spectral responses of the proposed WGR using the finite difference beam propagation method (BPM) show that the excess loss is less than 0.3dB and the crosstalk less than -25dB in case of 4x4 WGR, and the excess loss less than 0.4dB and the crosstalk less than -25dB in case of 8x8 WGR for all the channel wavelengths.

  • PDF

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

슬롯결합 적층 마이크로스트립 배열 안테나 해석 (Analysis of aperture coupled stacked microstrip array antenna)

  • 장병준;이용국;문호원;윤영중;박한규
    • 한국통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.753-762
    • /
    • 1996
  • In this paper, aperture coupled stacked microstrip array antennas are proposed and their operating characteristics are analyzed based on analytical. In order to evaluate mutual coupling between slot-coupled microstrip patches in finite array, analysis uses the reciprocity theorem and the spectral domain Green's functions for dielectric slab in a moment method solution for the unknown patches and solts current distrbution. By introducing an N-port equivalent network, the impedance matrix of an affay of N-element slot-coupled patches is evaluated directly from its network current matix of order N$^{2}$, and it can be programmed to be run on a PC. Numerical results show mutual coupling, radiation pattern, active reflection coefficient versus scan angle, radiation efficiency and active element gain pattern.

  • PDF

광결정 공진기와 링 공진기의 공진특성 결합을 통한 바이오센서 응용 (Applied of Integrated Optical Biosensor based on Combination of Photonic Crystal Micro-Cavity and Ring Resonator)

  • 김홍승;김두근;오금윤;이태경;최영완
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.817-822
    • /
    • 2011
  • We propose a novel ring structure based on the stadium-shaped ring resonator (SSRR) with dual photonic crystal microcavity (DPCM) for biosensor and analyzed the sensing characteristics. The Q-factor of the photonic crystal microcavity (PCM) can be significantly enhanced when the PCM or DPCM has the same resonance condition as the SSRR. The simulation results show that the Q-factor of the SRR with DPCM was increased by three times in comparison with single PCM structure. We also defined a mutual interference between two PCMs. Assuming a detectable spectral resolution of 10 picometers, a refractive index resolution of $3.03\times10-5$ can be measured on the SSRR-DPCM.