• 제목/요약/키워드: finite field operation

검색결과 156건 처리시간 0.023초

An Arithmetic System over Finite Fields

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.435-440
    • /
    • 2011
  • This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fields. The addition arithmetic operation over finite field is simple comparatively because that addition arithmetic operation is analyzed by each digit modP summation independently. But in case of multiplication arithmetic operation, we generate maximum k=2m-2 degree of ${\alpha}^k$ terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for the purpose of performing above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesizing ${\alpha}^k$ generation module and control signal CSt generation module with A-cell and M-cell. Next, we constructing the arithmetic operation unit over finite fields. Then, we propose the future research and prospects.

Window Non-Adajcent Form method를 이용한 타원곡선 암호시스템의 고속 스칼라 곱셈기 설계 및 구현 (Design and Implementation of Fast Scalar Multiplier of Elliptic Curve Cryptosystem using Window Non-Adjacent Form method)

  • 안경문;김종태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.345-348
    • /
    • 2002
  • This paper presents new fast scalar multiplier of elliptic curve cryptosystem that is regarded as next generation public-key crypto processor. For fast operation of scalar multiplication a finite field multiplier is designed with LFSR type of bit serial structure and a finite field inversion operator uses extended binary euclidean algorithm for reducing one multiplying operation on point operation. Also the use of the window non-adjacent form (WNAF) method can reduce addition operation of each other different points.

  • PDF

A Scalable Structure for a Multiplier and an Inversion Unit in $GF(2^m)$

  • Lee, Chan-Ho;Lee, Jeong-Ho
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.315-320
    • /
    • 2003
  • Elliptic curve cryptography (ECC) offers the highest security per bit among the known public key cryptosystems. The operation of ECC is based on the arithmetic of the finite field. This paper presents the design of a 193-bit finite field multiplier and an inversion unit based on a normal basis representation in which the inversion and the square operation units are easy to implement. This scalable multiplier can be constructed in a variable structure depending on the performance area trade-off. We implement it using Verilog HDL and a 0.35 ${\mu}m$ CMOS cell library and verify the operation by simulation.

  • PDF

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

CCD에 의한 GF($p^m$)상의 다치 승산기 구성에 관한 연구 (A Study on Construction of Multiple-Valued Multiplier over GF($p^m$) using CCD)

  • 황종학;성현경;김흥수
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper, the multiplicative algorithm of two polynomials over finite field GF(($p^{m}$) is presented. Using the presented algorithm, the multiple-valued multiplier of the serial input-output modular structure by CCD is constructed. This multiple-valued multiplier on CCD is consisted of three operation units: the multiplicative operation unit, the modular operation unit, and the primitive irreducible polynomial operation unit. The multiplicative operation unit and the primitive irreducible operation unit are composed of the overflow gate, the inhibit gate and mod(p) adder on CCD. The modular operation unit is constructed by two mod(p) adders which are composed of the addition gate, overflow gate and the inhibit gate on CCD. The multiple-valued multiplier on CCD presented here, is simple and regular for wire routing and possesses the property of modularity. Also. it is expansible for the multiplication of two elements on finite field increasing the degree mand suitable for VLSI implementation.

  • PDF

유한체를 사용한 RFID 상호인증 프로토콜 연구 (Study on RFID Mutual Authentication Protocol Using Finite Field)

  • 안효범;이수연
    • 융합보안논문지
    • /
    • 제7권3호
    • /
    • pp.31-37
    • /
    • 2007
  • 유비쿼터스 환경에서 개인 프라이버시를 보호하기 위한 RFID 시스템 보안에 대한 많은 연구가 이루어지고 있다. RFID 시스템 보안 중 상호인증 방법으로 XOR 기반, 해쉬기반, 그리고 재암호화 기반의 프로토콜을 사용한다. 그러나 인증과 프라이버시를 보호하기 위한 프로토콜은 좀 더 강화된 암호 시스템을 사용해야 한다. 공개키는 강력한 보안성을 제공하나, 비용이 많이 요구되어 RFID 시스템에서 사용하기에는 적합하지 않다. 따라서 본 논문에서는 상호 인증과 안전성을 위하여 유한체 GF($2^n$)을 이용한 인증 프로토콜을 제안하고 RFID 시스템에서의 여러 공격에 대하여 안전성 분석을 하였다.

  • PDF

Polynomial basis 방식의 3배속 직렬 유한체 곱셈기 (3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field)

  • 문상국
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.255-258
    • /
    • 2004
  • 정보 보호 응용에 새로운 이슈가 되고 있는 ECC 공개키 암호 알고리즘은 유한체 차원에서의 효율적인 연산처리가 중요하다. 직렬 유한체 곱셈기의 근간은 Mastrovito의 직렬 곱셈기에서 유래한다. 본 논문에서는 polynomial basis 방식을 적용하고 식을 유도하여 Mastovito의 직렬 유한체 곱셈방식의 3배 성능을 보이는 유한체 곱셈기를 제안하고, HDL로 기술하여 기능을 검증하고 성능을 평가한다. 설계된 3배속 직렬 유한체 곱셈기는 부분합을 생성하는 회로의 추가만으로 기존 직렬 곱셈기의 3배의 성능을 보여주었다.

  • PDF

Lagrange 보간법에 의한 Galois 스윗칭함수 구성 (Derivation of Galois Switching Functions by Lagrange's Interpolation Method)

  • 김흥수
    • 대한전자공학회논문지
    • /
    • 제15권5호
    • /
    • pp.29-33
    • /
    • 1978
  • 본 논문에서는 Galois 스윗칭함수를 구하기 위해서 임의의 유한체상에서 정의되는 Galois 체의 성질을 설명하였고, 임의의 유한체상에서의 연산방법을 밝혔다. 고리고 Lagrange 보간법에 의한 다항식이 유한체상에서 전개될 수 있음을 증명하였다 이 결과를 적용하여 단일변수를 갖는 Galois스윗칭 함수를 유도하고 다치논리회로를 실현하였다.

  • PDF

FAST OPERATION METHOD IN GF$(2^n)$

  • Park, Il-Whan;Jung, Seok-Won;Kim, Hee-Jean;Lim, Jong-In
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.531-538
    • /
    • 1997
  • In this paper, we show how to construct an optimal normal basis over finite field of high degree and compare two methods for fast operations in some finite field $GF(2^n)$. The first method is to use an optimal normal basis of $GF(2^n)$ over $GF(2)$. In case of n = st where s and t are relatively primes, the second method which regards the finite field $GF(2^n)$ as an extension field of $GF(2^s)$ and $GF(2^t)$ is to use an optimal normal basis of $GF(2^t)$ over $GF(2)$. In section 4, we tabulate implementation result of two methods.

  • PDF

여분 기저를 이용한 멀티플렉서 기반의 유한체 곱셈기 (Multiplexer-Based Finite Field Multiplier Using Redundant Basis)

  • 김기원
    • 대한임베디드공학회논문지
    • /
    • 제14권6호
    • /
    • pp.313-319
    • /
    • 2019
  • Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.