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An Arithmetic System over Finite Fields

Chun-Myoung Park, Member, KIMICS

Abstract— This paper propose the method of construeting
the highly efficiency adder and multiplier systems over finite
fields. The addition arithmetic operation over finite field is
simple comparatively because that addition arithmetic
operation is analyzed by each digit modP summation
independently. But in case of multiplication arithmetic
operation, we generate maximum k=2m-2 degree of o* terms,
therefore we decrease k into m-1 degree using irreducible
primitive polynomial. We propose two method of control
signal generation for the purpose of performing above
decrease process. One method is the combinational logic
expression and the other method is universal signal
generation. The proposed method of constructing the highly
adder/multiplier systems is as following. First of all, we
obtain algorithms for addition and multiplication arithmetic
operation based on the mathematical properties over finite
fields, next we construct basic cell of A-cell and M-cell using
T-gate and modP cyclic gate. Finally we construct adder
module and multiplier module over finite fields after
synthesizing o generation module and control signal CSt
generation module with A-cell and M-cell. Next, we
constructing the arithmetic operation unit over finite fields.
Then, we propose the future research and prospects.

Index Terms— arithmetic operation, finite field, polynomial,
control signal, cell, module, adder, multiplieretc.

I .INTRODUCTION

IN many fields of digital logic systems and computer
application, the arithmetic operation is important rolel' 2.
Specially, in modern time, the multimedia and its
application fields necessary to complex arithmetic
operation and massive data manipulation. Therefore
highly efficiency arithmetic operation and its systems are
researched in previous time?**\. In specially, the arithmetic
operation is effectively analyzed in finite fields fields®!%.

The finite fields is used to the mathematical
background for encryption/decryption, error correcting
code, digital image processing, digital signal processing,
switching function of digital logic systems etc.

This paper’s construction is as following. Section2
discuss the important mathematical properties of finite
fields and section3 discuss construct the adder module
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over finite fields that imply addition algorithm, basic A-
cell.

Sectiond discuss the multiplier module over finite fields
that imply multiplication algorithm, basic M-cell, of
generation module, control signal CSt generation module,
universal control signal CSt generation module. Also,

in section5, we propose a method of arithmetic
operation unit over finite fields. Finally, in section6, we
summary the proposed arithmetic operation unit finite
fields, and we compare proposed method with earlier
method. Also we prospect future demand research and
prospect.

If we will construct the logical operation unit, it will be
able to construct the arithmetic & logical operation
unit(ALOU).

II. ARITHMETIC

Arithmetic or arithmetics the oldest and most
elementary branch of mathematics, used by almost
everyone, for tasks ranging from simple day-to-day
counting to advanced science and business calculations. It
involves the study of quantity, especially as the result of
combining numbers.

In common usage, it refers to the simpler properties
when using the traditional operations of addition,
subtraction, multiplication and division with smaller
values of numbers. Professional mathematicians
sometimes use the term higher arithmetic when referring
to more advanced results related to number theory, but
this should not be confused with elementary arithmetic.
These artifacts do not always reveal the specific process
used for solving problems, but the characteristics of the
particular numeral system strongly influence the
complexity of the methods. The hieroglyphic system for
Egyptian numerals, like the later Roman numerals,
descended from tally marks used for counting. In both
cases, this origin resulted in values that used a decimal
base but did not include positional notation.

Although addition was generally straightforward,
multiplication in Roman arithmetic required the
assistance of a counting board to obtain the results.. Any
set of objects upon which all four arithmetic operations
(except division by zero) can be performed, and where
these four operations obey the usual laws, is called a
field. Addition (+) is the basic operation of arithmetic. In
its simplest form, addition combines two numbers, the
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addends or terms, into a single number, the sum of the
numbers.

Adding more than two numbers can be viewed as
repeated addition; this procedure is known as summation
and includes ways to add infinitely many numbers in an
infinite series; repeated addition of the number one is the
most basic form of counting. Addition is commutative and
associative so the order the terms are added in does not
matter. The identity element of addition (the additive
identity) is 0, that is, adding zero to any number yields
that same number. Also, the inverse element of addition
(the additive inverse) is the opposite of any number, that
is, adding the opposite of any number to the number itself
yields the additive identity, 0 Addition can be given
geometrically as follows: If a and b are the lengths of two
sticks, then if we place the sticks one after the other, the
length of the stick thus formed is a + b. Subtraction (-)
is the opposite of addition.

Subtraction finds the difference between two numbers,
the minuend minus the subtrahend. If the minuend is
larger than the subtrahend, the difference is positive; if the
minuend is smaller than the subtrahend, the difference is
negative; if they are equal, the difference is zero.
Subtraction is neither commutative nor associative. For
that reason, it is often helpful to look at subtraction as
addition of the minuend and the opposite of the
subtrahend, that is a — b = a + (—b). When written as a
sum, all the properties of addition hold. There are several
methods for calculating results, some of which are
particularly advantageous to machine calculation. For
example, digital computers employ the method of two's
complement. Of great importance is the counting up
method by which change is made.

Although the amount counted out must equal the result
of the subtraction P ~ Q, the subtraction was never really
done and the value of P — Q might still be unknown to the
change-maker. Mnultiplication is the second basic
operation of arithmetic. Multiplication also combines two
numbers into a single number, the product.

The two original numbers are called the multiplier and
the multiplicand, sometimes both simply called factors.
Multiplication is best viewed as a scaling operation. If the
real numbers are imagined as lying in a line,
multiplication by a number, say x, greater than 1 is the
same as stretching everything away from zero uniformly,
in such a way that the number 1 itself is stretched to
where x was. Similarly, multiplying by a number less than
1 can be imagined as squeezing towards zero.

Multiplication is commutative and associative; further
it is distributive over addition and subtraction. The
multiplicative identity is 1, that is, multiplying any
number by 1 yields that same number. Also, the
multiplicative inverse is the reciprocal of any number
(except zero; zero is the only number without a
multiplicative inverse), that is, multiplying the reciprocal
of any number by the number itself yields the
multiplicative identity. The product of a and b is written

as axboras*b. When a or b are expressions not written
simply with digits, it is also written by simple
Jjuxtaposition: ab. In computer programming languages
and software packages in which one can only use
characters normally found on a keyboard, it is often
written with an asterisk: a * b. Division is essentially the
opposite of multiplication. Division finds the quotient of
two numbers, the dividend divided by the divisor. Any
dividend divided by zero is undefined. For positive
numbers, if the dividend is larger than the divisor, the
quotient is greater than one, otherwise it is less than one
(a similar rule applies for negative numbers).

III. INTRODUCTION MATEHEMATICAL
PROPERTIES OF FINITE FIELD

In this section, we review the important mathematical
properties over finite fields®'?), these mathematical
properties used in build up this paper. Any other
mathematical properties except these mathematical

properties refer to references.

3.1 Finite Fields

Finite fields is defined by any prime number P and
integer m, namely finite fields GF(P™). In generally
finite fields is organized by 5-tuple {S, +, -, 0, 1}, where
S is set of elements, + and - are binary operation over S, 0
and 1 are each identity element for addition and
multiplication arithmetic operation. Also finite fields are
classified into ground fields GF(P) and extension fields
GF(P™). The number of elements over ground fields
GF(P), P is the prime number more than 1, are

3.2 Important mathematical properties
The important mathematical properties over finite
fields are as following.

<P1> Commutative law :
(1) atb=b+a (2) ab=b-a (VabEGF(P™))
<P2> Associative law :
(1) at(b+c)y=(atb)tc (2) a-(b-c)=(a-b)c
(Va,b,cEGFP™)
<P3> Distributive law :
a(btc)=abtac (Vab,cEGFP™)
<P4> Zero element 0 exist. at0=0+a=a
(VaEGF(P™)
<P5> Unit element 1 exist. a-1=1-a=a
(VaEGF(P™)
<P6> Inverse element exist.
additive inverse element.
at(-a)=0 multiplicative inverse element .
a(a?)=1(V-a, a’ EGF(P))
<P7> 0-a=a-0=0 (V aEGF(P™)).
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IV. ADDER
4.1 Addition Algorithm
e
We put any two element over GF(P™), F(OL)=Z:aiOLi
=0

m m
and G(a)= D bied, also A(cy= Y Ao which is the
o 0

element after adding them. Then we represent relationship
among these elements as following.

F(e) + G(o) =Y et + Y bjod =D (ai+by) of
=0 j=0 i

md
= A= A(o) (1)
=0

where, a; b, A(&GF(P)={0,1,...,P-1} (1,j,k=0,1,...,m-
1), Ax=a;+b;, 2 and + means modP summation.

Also, we represent above expression (1) to vector space,
it is expression (2).

Flo=F(e)=an 1, ana, -..... » ar, 8o]= F(a[av]
G(a)=G(a)=[bm 1, bz, ... , b1, bo]= G(a[bv]
A(0)FA@)FAn 1, Ana, oo s A, Ao]= A(a)[Av]
F(0:) + G(o)=F(a)[av] + G(al[byl= A(0)[Av]

Where, ay_by, AyEGF(P)(V=0,1,...,m-1)  (2)

4.2 Basic A-cell

In order to construct adder, first we construct basic
adder cell(A-cell) using data selector T-gate and modP
cyclic gate. The following expression (3) represent T-gate
operation and fig.1 depict T-gate, expression (4) represent
modP cyclic gate operation and fig.2 depict modP cyclic
gate.

Z=1 iff 1=CS, 3)
Iy, — o
I,
Input
L L — 2 TG[P] Output
[ | | Z
5 Do
Lo = P2
Ly — P-1
Control
Signal 1
CSj

Where, I;, Z, CS;<GF(P) and i,j=0,1,...... P-1
Fig. 1. The block diagram of T-gate.

Z=1"~(1+C) modP (4)

Input Output
sy

Where, 1<C<P-1(C=integer)

Fig. 2. The block diagram of modP cyclic gate.

As we see above contents, because of Ay=a;+b;(i=j=k),
Ay is obtained as following. The coefficient a; use as T-
gate input after passing modP cyclic gate, also b;use as T-
gate control signal. Therefore we construct A-cell, fig.3,
and its characteristic operation is expression (5).

A=a;""=( a;+b;) modP 5)

Fig. 3. The block diagram of A-cell.

4.3 Adder module
We construct the adder module(A-module) using above
sections. The fig.4 shows block diagram of A-module.

Haa) 2 Asmodle - AlelA)

Fig. 4. The block diagram of adder module

V.MULTIPLIER MODULE

There are 2m—2 term of o for any two element
multiplication over Galois Fields, that time we convert o
term of of, m<k<2m-2, into less standard basis
representation o term less than m-1 degree using
irreducible primitive polynomial. Next we obtain the

result that multiply two element after sum each o term.
We named Mod F(X) for this processing.
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[Definition 1] Let 8[(a0, al, ... ,am-2, am-1),(b0, b1,

. ,bm-2, bm-1)]=Mk, mapping function & is binary
operation, 8:GF(P™)xGF(P™)—>GF(P). Where Mk is the
K product result of (a0, al, ... ,am-2, am-1) and (b0, b1,
... ,bm-2, bm-1), and ai, bj&GF(P)i,;=0,1,...,m-1) and
0<k<Z2m-2.

Also mapping relationship is decided by selection
irreducible primitive polynomial.

5.1 Multiplication algorithm

el
We put any two element over GF(P™), F(oc)=z:aioci
=0

md md
and G(o)= Y bied, also  M(e)= Y Mio* that is the
J=0 k=0

element after multiply them. Then we represent
relationship among these elements as following.

m m -
F(0) ¢G(0x) =Z:a1-oci oijocj =am.1(ijocj) o™ ta,
mi md md
D by o 2 bad) o ag( D bietd) o
0 = 0
2m2
= Zai bj (Xi+j (6)
i=0

where, a;,b;SGF(P)(i,jk=0,1,...,m-1), + and ¥ are modP
summation, e is mod P product.

As we see the expression (6), we partition o term into
m<kl<2m-2 and 0<k2<m-1. This is represent in
expression (7).

2m2 ml ml
F(o) G(o)= )_a;bj ole )~ a;by o= Mok =M(er)
kem k=0

120
(7

where, k1= a; bj(kl=itji=m,m+1, ... 2m-2) and k2= a;
bi(k2=i+j=0,1, ... ,m-1)

The other hand, these o' terms are used in input of
control signal CSt.

5.2 ModP multiplication gate and M-cell

This section discuss the modP multiplication
processing device that is constructed by using T-gate,
namely modP multiplication gate, it is depicted in fig.5.
And we construct basic M-cell using by modP
multiplication gate and adder basic cell A-cell, it is
depicted in fig.6.

8, ] @P

b—rl

Where, a&j ,bj s ME GF(P)

Fig. 5. The block diagram of modP muitiplication Gate.

Previous
stage Rr a,
b — .. ——bj
ij
2, Next stage
Rr
(a) symbol
Previous
stage . a
b, b,
Next stage
Rf

(b) internal circuit
where, a;,b,R,&GF(P)
Fig. 6. Basic M-cell.
5.3 o generation module

The o generation module can be constructed by using
M-cell, it is represented in fig.7.
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Fig. 7. o generation module

5.4 Control signal CSt generation module

The o term is generated in m<k1<2m-2 and 0<k2<m-1,
we can obtain multiplication result between two element
using modP sum o with result after decrease m-1 degree
using irreducible primitive polynomial.

Therefore o' term is defined according to 0%, we
named o/ to control signal CSt(t=0,1,2,...,m-1). This

paper propose two algorithm of generating control signal
CSt.

5.4.1 Combinational method

[STEP1] we select the proper irreducible primitive
polynomial.
[STEP2] we construct basic control digit code

BCD,(QQQ...Q) of of. Where w=m,m+1,...,2m-2 and QE
GF(P).

[STEP3] final control signal CSt is obtained as following. we
disregard Q except corresponding Ry, and modP sum after each
modP multiply. The drawback of this algorithm in according to
selected irreducible primitive polynomial. Therefore, in using
this algorithm, we select irreducible primitive polynomial type
XHP-DX™HP-DX™ % ... + (P-1)X+(P-1).

5.4.2 Universal control signal CSt generation module

This proposed algorithm’s advantage is usage of any
irreducible primitive polynomial. That is not change basic
control signal generation module, only input each o
term coefficient in change the selected irreducible
primitive polynomial.

We named this algorithm as universal control signal
CSt generation module. This universal control signal CSt
generation module operate modF(X). In order to obtain
this function, we input coefficient of irreducible primitive
polynomial to shift register, and shift each coefficient to
next stage shift register in case of multiply o term in each
time.

The fig.8 depicted universal control signal CSt
generation module.

R2m 2 RZm—3 Rm+1 Rm
o gﬂ
g S-R

Fig. 8. Universal control signal CSt generation module.

5.5 Multiplier

This section discuss constructing the multiplication
module over galois fields. We can construct this
multiplication module in merging o generation module
with control signal generation module CSt. Where, final
multiplication result My(k=0,1,.....,m-1) between any two
element over galois fields obtain R, of o mod P cyclic
corresponding to control signal CSt. This is represented in
expression (8).

M= er—)cst (®

Then, the expression (8) is the same as expression in
adder module. Therefore we use the adder module in this
part, this block diagram depicted in fig.9.
—<+—Glab)

— <+ FHaj@)

|
m
o generation
%nodule Adder
module
o n Qver T
part GF(p")
m (lrl 12
part CSt| m m
Control
signal
eneration
m-] R, gmodule
M@)M,) <

Fig. 9. The multiplier over galois fields.
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VI. CONCLUSION

This paper propose the method of constructing the
highly efficiency adder and multiplier systems over finite
fields. The proposed highly adder/multiplier systems is
more regularity, extensibility and modularity than any
other research. Also, the proposed highly efficiency adder
and multiplier systems is fabricated in VLSI type easily.
The future demand research is the other arithmetic
operation subtracter and divider, also need to constructing
AOU(Arithmetic Operation Unit) in order to processing
the four basic arithmetic operation. And we demanded
more improvement ALOU(Arithmetic & Logical
Operation Unit). The proposed highly efficiency adder
and multiplier systems is able to apply modem
multimedia hardware systems. The following table 1
represented several item that compare proposed highly
adder/multiplier over finite fields with any other research
result.

TABLE I
THE COMPARISON TABLE
Comparison C.C. C-Ling |S.T.J.Fenn| This
item Wang!"!! | etal. ¥ etal. 1] paper
Basis SDNB SB DB NB
I/0 Type SISO SIPO P-1/'O P-I/'O
AND 3m 2m’ 2m’ 2m
OR 2m 2m’ 2m? m
# of control
signal 2m-1 2m-1 2m-2 m-1
Overall Type M-O S-A S-A S-A
Regularity/
Extensibility * © ° °
Remarks :

SISO : Serial Input Serial Output
SIPO : Serial Input Parallel Output
P-1/O : Parallel /O, I/O : Input/Output
SDNB : Standard Dual Normal Basis
SB : Standard Basis

NB : Normal Basis, DB : Dual Basis
M-O : Massey-Omura

S-A : Systolic Array

o: Available

©):some available

e: Disable
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