• 제목/요약/키워드: finite field method

검색결과 2,141건 처리시간 0.028초

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션 (Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method)

  • 이창계;;이정재
    • 한국전산구조공학회논문집
    • /
    • 제36권5호
    • /
    • pp.295-305
    • /
    • 2023
  • 본 연구에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 위상분야법(Phase-field method)에 대해 소개하고자 한다. 위상분야법은 최근 균열 개시 및 전파 해석에 많이 사용되는 기법으로 균열 표면을 추적하기 위한 추가적인 처리기법이 필요하지 않는 특징이 있다. 위상분야법에서 복잡한 균열 전파를 포착하기 위해 높은 정확도의 변형률 에너지를 평활화 유한요소법을 도입하여 계산하였다. 평활화 유한요소법은 유한요소를 하위 셀로 나누고 각각의 하위 셀을 평활화 영역으로 재조립하여 변형률 에너지를 계산하게 된다. 또한 해석 시간 단축을 위하여 쿼드트리 요소망을 제안한 기법에 사용하였다. 수치 예제를 통하여 제안한 기법을 참조해 및 유한요소법과 비교하여 검증하였다.

변위형 유한요소 해에서 국부응력장 향상에 대한 연구 (A study on the improvement of the local stress field in a displacement-formulated finite element solution)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.278-288
    • /
    • 1998
  • An efficient and useful method to improve the local stress field in a displacement-formulated finite element solution has been proposed using the theory of conjugate approximations for a stress field and the Loubignac's iterative method for a displacement field. Validity of the proposed method has been tested through three test examples, to improve the stress field and displacement field in the whole domain and the local regions. As a result of analysis on the test examples, it is found that the stress field in the local regions are approximated to those in the whole domain within a few iterations which have satisfied the original finite element equilibrium equation. In addition, it is found that the local stress field are by far better approximated to the exact stress field than the displacement-based stress field with the reduction of the finite-element mesh-size.

유한요소법을 이용한 압전 액츄에이터의 최적설계에 대한 연구 (A Study on the Optimum Design of the Piezoelectric Actuator Using the Finite Element Method)

  • 임춘기;범현규;양영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.680-683
    • /
    • 1997
  • In this paper, the multilayer actuator is investigated by using the finite element method. The material is taken to be piezoelectric. The capacitor and interdigital wlfloating type actuator are compared to the stress field distribution under the uniform electric field. As the length of the floating electrode in the interdigital wlfloating actuator changes, the stress field around the edge of electrode is studied.

  • PDF

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

E-$\Omega$ 법을 이용한 3차익 교류 자장 해석 (Three-Dimensional Time Varing Magnetic Field Analysis: Using E-$\Omega$ Method)

  • 김동수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.49-52
    • /
    • 1989
  • Some limits are in two-dimensional analysis by finite element method to electromagnetic machine having finite dimension. Therefore three-dimensional analysis by finite element method, which are modeling original form of models are needed in order to gain accurate solutions. This paper present three-dimensional time varing magnetic field analysis method using electric field E and magnetic scarlar potential $\Omega$, and examine sample model.

  • PDF

유한체상의 자원과 시간에 효율적인 다항식 곱셈기 (Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

유한요소법 및 경계적분법의 혼합법에 의한 개 영역 자장문제 해석 (A Composite Method of Finite Element and of Boundary Integral Methods for the Magnetic Field Problems with Open Boundary)

  • 정현교;함송엽
    • 대한전기학회논문지
    • /
    • 제36권6호
    • /
    • pp.396-402
    • /
    • 1987
  • A Composite method of finite element and boundary integral methods is introduced to solve the magnetostatic field problems with open boundary. Only the region of prime interest is taken as the compution region where the finite element method is applied. The boundary conditions of the region are dealt with using boundary integral method. The boundary integration in the boundary integral method is done by numerical and analytical techniques repectively. The proposed method is applied to a simple linear problem, and the results are compared with those of the finite element method and the analytic solutions. It is concluded that the proposed method gives more accurate results than the finite element method under the same computing efforts.

  • PDF

FAST OPERATION METHOD IN GF$(2^n)$

  • Park, Il-Whan;Jung, Seok-Won;Kim, Hee-Jean;Lim, Jong-In
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.531-538
    • /
    • 1997
  • In this paper, we show how to construct an optimal normal basis over finite field of high degree and compare two methods for fast operations in some finite field $GF(2^n)$. The first method is to use an optimal normal basis of $GF(2^n)$ over $GF(2)$. In case of n = st where s and t are relatively primes, the second method which regards the finite field $GF(2^n)$ as an extension field of $GF(2^s)$ and $GF(2^t)$ is to use an optimal normal basis of $GF(2^t)$ over $GF(2)$. In section 4, we tabulate implementation result of two methods.

  • PDF

Near-field Characterization on Light Emanated from Subwavelength Plasmonic Double Slit of Finite Length

  • Kim, Ki-Young;Goncharenko, Anatoliy V.;Hong, Jian-Shiung;Chen, Kuan-Ren
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.196-201
    • /
    • 2011
  • Near-field properties of light emanated from a subwavelength double slit of finite length in a thin metal film, which is essential for understanding fundamental physical mechanisms for near-field optical beam manipulations and various potential nanophotonic device applications, is investigated by using a three-dimensional finite-difference time-domain method. Near-field intensity distribution along the propagation direction of light after passing through the slit has been obtained from the phase relation of transverse electric and magnetic fields and the wave impedance. It is found that the near field of emerged light from the both slits is evanescent, that is consistent with conventional surface plasmon localization near the metal surface. Due to the finite of the slit, the amplitude of this evanescent field does not monotonically approach to than of the infinite slit as the slit length increases, i.e. the near-field of the longer slit along the center line can be weaker than that of the shorter one.