• Title/Summary/Keyword: finite element numerical simulations

Search Result 435, Processing Time 0.023 seconds

Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

  • Kim, Moon-Chan;Lee, Seung-Ki;Lee, Won-Joon;Wang, Jung-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.116-131
    • /
    • 2013
  • The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed ice-going cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

Effect of Bifurcation Angle on Blood Flow in Flexible Carotid Artery (유연한 경동맥 분지관에서 분지각이 혈액의 유동에 미치는 영향에 관한 연구)

  • Lee, Sang Hoon;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • To investigate the effect of the flexible artery wall on the blood flow, three-dimensional numerical simulations were carried out for analyzing the time-dependent incompressible flows of Newtonian fluids constrained by a flexible wall. The Navier-Stokes equations for fluid flow were solved using the P2P1 Galerkin finite element method, and mesh movement was achieved using an arbitrary Lagrangian-Eulerian formulation. The Newmark method was employed for solving the dynamic equilibrium equations for the deformation of a linear elastic solid. To avoid complexity due to the necessity of additional mechanical constraints, we used a combined formulation that includes both the fluid and structure equations of motion to produce a single coupled variational equation. The results showed that the flexibility of the carotid wall significantly affects flow phenomena during the pulse cycle. The flow field was also found to be strongly influenced by the bifurcation angle.

Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact (다중판재의 고속충돌에 관한 최적설계)

  • Yoon, Deok-Hyun;Park, Myung-Soo;Yoo, Jeong-Hoon;Chung, Dong-Teak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

Development of three-dimensional thermal oxidation simulator (3차원 산화 시뮬레이터 개발)

  • 이제희;윤상호;광태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.38-45
    • /
    • 1997
  • In this paper, the three-dimensional stress effect of thermal oxide is simulated. We developed a three-dimensional finite element numerical simulator including three-dimensional adaptive mesh generator that is able to refine and eliminate nearby moving boundary of oxide, and oxidation solver with stress model. To investigate the behavior of thermal oxidation the simulations of thermal oxidation for island and hole structures are carried out assuming silicon wafer of <100> direction, temperature of $1000^{\circ}C$, oxidation time of 60min, wet ambient, initial oxide thickness of $300\AA$, and nitride thickness of $2, 000\AA$. The main effect of deformation at the corner area of oxide is due to distribution of oxidant, but the deformation of oxide is affected by the stressin theoxide. In the island structure which is the structure mostly covered with nitride and a coner is opended to oxidation, oxidation is reduced at the coner by compressive stress. In the hole structure which is the structure mostly opedned to oxide and a coner is convered with nitride, however, oxidation is increased at the coner by tensile stress.

  • PDF

Stiffness of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 강성)

  • Park, Jeongseon;Park, Duhee;Yoon, Sewoong;Jang, Hwasup;Yoon, Jinam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.5-15
    • /
    • 2017
  • To perform an integrated load analysis carried out to evaluate the stability evaluation of wind turbine generators, the six degree-of-freedom stiffness matrix of foundation, which describes relationships between loads and displacement, is needed. Since the foundation stiffness should accurately reflect the shape of foundation and the condition of soil, it is necessary to calculate the stiffness of the bucket foundation that considers the elasto-plastic behavior of the soil. In this study, finite element analyses were performed for a range of soils and shapes of bucket foundations to estimate the foundation stiffness. Normalized stiffness curves are developed from respective numerical simulations. Proposed results are considered to be useful because they can be directly applied in the design.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

Study on Crashworthiness of Icebreaker Steel: Part II Ship Side Structural Behavior Due to Impact Bending (쇄빙선의 내충격 특성에 관한 실험적 연구: 제2부 선체 구조의 충격 굽힘 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Han, Donghwa;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.277-286
    • /
    • 2016
  • The first part of this study found the tendencies of the mechanical properties of two arctic structural steels (EH32 and FH32). In the second part, the crashworthiness of stiffened panels scaled down from the side frame structure of a Korean research icebreaker was determined. A procedure for designing the shapes and sizes of the stiffened panels, mass and shape of a drop striker, and a large temperature chamber, and then manufacturing these, is introduced in detail. From impact bending tests for the stiffened panels, the residual permanent deformations and deformation histories over time were captured using manual measurement and video image analyses. Numerical simulations of the impact bending tests were carried out for three different finite element models, which were mainly composed of shell elements, solid elements, and solid elements, with welding beads. It was proven from a comparison of the test results and numerical simulation results that the solid element model with the welding bead consideration approached the test results in terms of the residual deformations as long as the strain rate effect was taken into account.

Parametric Studies for Measurements of Dynamic Properties of Soils Using Inhole type CPTu (인홀형 탄성파콘 시험 결과에 미치는 변수 연구)

  • Jang, In-Sung;Kwon, O-Soon;Kim, Byoung-Il;Lee, Seung-Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.523-531
    • /
    • 2008
  • In hole type CPTu equipment which combines the concepts of inhole test method and piezocone test method was newly developed in order to evaluate the dynamic properties of marine soils. It is possible to perform inhole type CPTu without any additional source device because the source and receiver are contained inside the cone rod, which is different from the conventional seismic cone system. In this study, laboratory tests using kaolinite as soft soil and numerical simulations using finite element method were carried out to investigate the effects of several parameters including test methods and soil conditions on the test results from inhole type CPTu and to find out the optimum test method. It was found that it is necessary to maintain the length of swing arm as well as the distance between source and receiver consistently to obtain the rigorous test results. The laboratory test and numerical results also reveal that contrary to the input wave frequency, the water content of soil layer and the disturbance due to the installation of swing arm apparently affect the shear wave velocity.