• Title/Summary/Keyword: finite element method.

Search Result 13,458, Processing Time 0.051 seconds

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF

Stress Concentration Ratio According to Penetration Rate of Composite Ground Reinforced with GCP (GCP로 개량된 복합지반의 관통률에 따른 응력분담비)

  • Na, Seung-Ju;Kim, Daehyeon;Lee, Ik-Hyo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for design is dependent on the area replacement, surcharge pressure, depth and penetration rate. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. But since the main objective of the study is to evaluate the stress concentration ratio and settlement for both area replacement ratio and penetration rate through numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. As a result, the stress concentration ratio at the points except for the point of top is in the range of 1.21-5.36, 1.19-5.45, 2.16-5.60 for 60%, 80% and 100% penetration, respectively. In general, as the penetration rate and area replacement ratio increases, the stress concentration ratio tends to increase.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Stress Concentration Ratio of GCP Depending on the Mixing Ratio of Crushed Stone and Sand (GCP의 쇄석과 모래의 배합비 별 응력분담비)

  • Na, Seung-Ju;Kim, Min-Seok;Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.37-50
    • /
    • 2016
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for GCP design is dependent on the area replacement, surcharge pressure and depth. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. Little study has been done on the stress concentration ratio for the mixing ratio of gravel and sand. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and mixing ratio through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. The excess pore water pressure and stress concentration ratio of composite ground have been analyzed for both the area replacement ratio and the mixing ratio. Based on the previous research results, a range of stress concentration ratio obtained from the field tests, laboratory tests, numerical analysis on the GCP studies is found to be 1.7-3.2, 2.0-7.5 and 2.0-6.5, respectively. Based on the numerical analysis results, as the area replacement ratio increases, the stress concentration ratio increases up to 30% and then decreases at 40%. Also, the stress concentration ratio tends to increase up to 70:30 and then to decrease after 60:40.

Evaluation on the External Restraint Stress in Mass Concrete (매스콘크리트의 외부구속응력에 관한 검토)

  • 강석화;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.111-122
    • /
    • 1996
  • The effects of external restraint on the thermal stresses i n mass concrete are investigated through a series of parametric study. Two major factors affecting the degree of external restraint such as the ratio of length to height of the placed structure (L/H) and the elastic modulus of base structure ($E_r$) are employed as the parameters in a condition which a placing height H is 1.0m. Various conditions of I,/H and E, are analysed by a FEM program and the relationship between these two parameters is examined. The shape of stress distribution due to the external restraint is shown as linearity on the height direction of the section, and is influenced by L/H, $E_r$, and strength development of placed concrete. The external restraint can be devided by two part. One is an axial restraint and the other is a flexural restraint. When the level of external restraint is low, the structure behavior is mainly governed by flexural restraint, otherwise it is dependent on axial restraint. Comparing the calculated stress by the method of the ACI 207 committee with a finite element analysis, the fbrmer overestimates the external restraint stress when the degree of external restraint is weak, and underestimates when it is strong.

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery (차량용 12-V 납축전지의 충·방전 모델링)

  • Kim, Ui Seong;Jeon, Sehoon;Jeon, Wonjin;Shin, Chee Burm;Chung, Seung Myun;Kim, Sung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of $25^{\circ}C$. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.

Characteristics for Horizontal Displacement of Temporary Earth Retaining Wall on Marine Sediments (해성퇴적층 지반의 가시설토류벽 수평변위 특성에 관한 연구)

  • Kim, Younghun;Kim, Chanki;Choi, Sungyeol;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • In this study, the value of numerical analysis was compared to the measured value of horizontal displacement during construction. And also, the value was reviewed by comparing with numbers calculated by SUNEX program and EXCAV program. When comparing to suggested values of the maximum horizontal displacement in clayey layer, the displacement caused by the IPS system is larger than one by the Strut girder type system. When comparing the result of SUNEX program to that of EXCAV program, the SUNEX program interprets larger value. It could be concluded the result of SUNEX program is closer to the suggested value, 0.5%H, in clayey layer. The result also shows that the internal friction angle(${\Phi}$) is the key factor of developing horizontal displacement rather than type of supporting systems or materials. That means small horizontal displacement occurs in sandy layer having large value of the internal friction angle, whereas vice versa in clayey layer having small value of the internal friction angle. Therefore, the result of EXCAV program is larger in sandy layer and vice versa in clayey layer. When comparing the measured result during construction to the value of 0.5%H, the measured result is 1.4 times greater than the value of 0.5%H. In contrast, the result of SUNEX program is only 78.1% of the value of 0.5%H and the one of EXCAV program is just 18.1% of that. This result shows the calculated value by SUNEX or EXCAV program is smaller than the observed value by measuring during construction. In result, more careful attention is needed to determine the behavior of the ground. To better analyze the behavior of the ground, more precise finite element method is required.

Thermo-mechanical Behavior Characteristic Analysis of $B^2it$(Buried Bump Interconnection Technology) in PCB(Printed Circuit Board) (인쇄회로기판 $B^2it$(Buried Bump Interconnection Technology) 구조의 열적-기계적 거동특성 해석)

  • Cho, Seung-Hyun;Chang, Tae-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2009
  • Although thin PCBs(Printed Circuit Boards) have recently been required for high density interconnection, high electrical performance, and low manufacturing cost, the utilization of thin PCBs is severely limited by warpage and reliability issues. Warpage of the thin PCB leads to failure in solder-joints and chip. The $B^2it$(Buried Bump Interconnection Technology) for PCB has been developed to achieve a competitive manufacturing price. In this study, chip temperature, package warpage, chip stress and solder-joints stress characteristics of the PCB prepared with $B^2it$ process have been calculated using thermo-mechanical coupled analysis by the FEM(Finite Element Method). FEM computation was carried out with the variations in bump shapes and kinds of materials under 1.5W power of chip and constant convection heat transfer. The results show that chip temperature distribution reached more quickly steady-state status with PCB prepared with $B^2it$ process than PCB prepared with conventional via interconnection structure. Although $B^2it$ structures are effective on low package warpage and chip stress, with high strength bump materials arc disadvantage for low stress of solder-joints. Therefore, it is recommended that optimized bump shapes and materials in PCB design should be considered in terms of reliability characteristics in the packaging level.

  • PDF