• Title/Summary/Keyword: finite element method(FEM)

Search Result 3,154, Processing Time 0.031 seconds

Optimization of a Membrane with a Center Hole using Natural Element Method and Genetic Algorithm (자연요소법과 유전자 알고리듬을 사용한 원공 평판의 최적설계)

  • Lee, Sang-Bum;Seong, Hwal-Gyeng;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Natural element method (NEM) is quick in research activities by natural sciences and mechanical engineering fields, and from which good results are watched by various engineering fields and applied too. However no paper or research about the applied case has announced yet. Therefore on this paper, I will rediscover an optimum design and apply NEM into other fields with NEM for existing optimum design of mainly using FEM. NEM and genetic algorithm (GA) are applied to optimize a membrane with a center hole. The optimal design obtained by NEM is compared to the counterpart obtained by the finite element method (FEM). Result by NEM is found to be better than the result by FEM. NEM can be a feasible analysis tool in design optimization.

A study on Moving Surface Method to Consider a Motion of Electrical Machine with Finite Element Method (움직임을 고려한 전기기기의 유한요소기법에 관한 연구)

  • Won, Sung-Hong;Lim, Seoung-Bin;Bae, Jae-Nam;Kim, Myung-Chin;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.589-595
    • /
    • 2006
  • As one of numerical methods, the Finite Element Method (FEM) is very widely used to analyze electrical machines these days. However, the most electrical machines have a motion and it is very important to consider a motion in electrical machine analysis. In this paper, Moving Surface Method is suggested as a new approach to consider a motion and discuss its advantages and disadvantages. And also, a finite element analysis program which applied Moving Surface Method is developed and we evaluate its results compared with experimental results of a real model.

Evaluation of Material Properties of Welding Zone in Laser Welded Blank and Its Application to Sheet Metal Forming Analysis (레이저 용접 테일러드 블랭크의 용접부 물성평가 및 박판성형 해석에 적용)

  • 구본영;금영탁
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 1999.05a
    • /
    • pp.29-32
    • /
    • 1999
  • The material properties of laser welding zone such as strength coefficient, work-hardening exponent, and plastic anisotropic ratio are analytically obtained from those of base metals based on the tensile tests. . The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welding zone(WZ) is modelled with the several, narrow finite elements whose material characteristics are based on the experimental results and the analytical equations. In order to show an application of the developed weld element the stamping process of auto-body door inner panel is simulated. FEM predictions are compared and showed good agreements with experimental observations.

  • PDF

Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements (요소 독립성이 유지되는 반복해법에 의한 객체지향 유한요소모델 개발)

  • Lee, Han-Ki;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-125
    • /
    • 2012
  • Application of the Object-oriented Programming (OOP) method to the Finite Element Model (FEM) program has various strengths including the features of encapsulation, polymorphism and inheritance. However, this technique should be based upon a premise that the independency of the object method and data to be used is guaranteed. By attempting to apply the OOP to the FEM, existing researches go against the independency of the OOP which is an essential feature of the method. The reason is this: existing researches apply the OOP to modules in accordance with analysis procedures, although the data to be used is classified as an element unit in the FEM. Therefore, the required independency cannot be maintained as whole stiffness matrices and boundary conditions are combined together. Also, solutions are sought from analysis module after data is regrouped at the pre-processor, and their results are analyzed during the post-processor. As this is similar to a batch processing, it cannot use data at analysis, and recalculation should be done from the beginning if any condition is changed after the analysis is complete, which are limitations of the existing researches. This research implemented the Object-orientation of elements so that the three features of the OOP (i.e. encapsulation, polymorphism and inheritance) can be guaranteed and their independency maintained as a result. For this purpose, a model called 'Object-oriented Finite element Model ensuring the Independency of Elements (OFMIE)', which enables the analysis of targets through mutual data exchanges within instance, was developed. In conclusion, the required independency was achieved in the instance of the objected elements and the analysis results of previous conditions could be used for the analysis after changes. The number of repetitive calculations was reduced by 75 per cent through this gradual analysis processes.

Tool life increase for Hot forging with Finit Element Method (FEM을 이용한 열간금형 수명 향상)

  • 강종훈;이희방;김주현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06b
    • /
    • pp.141-146
    • /
    • 1999
  • In the stage of process design, many factors affecting tool life should be considered. Wear, Damage Accumulation and excessive die Stress are those. Most Engineer think wear and damage accumulation affection deeply to the cold forging dies and wear for the hot forging dies. In this report, the example that wear and stress distribution affect tool life in hot forging together will be introduced and the way to solve that problem using Finite Element Method.

  • PDF

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

Analysis and Design of Shoes Using Non-Linear Finite Element Method (비선형 유한요소법을 이용한 신발 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.195-205
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with air-cycled pump in the midsole. The golf shoes are modeled using the finite element method for better design by considering the configuration of the midsole and the outsole, which compose the golf shoes. Also the optimum size and shape of air-cycled pump in the midsole is examined. The values or standard human pressure for boundary conditions are adopted for the FEA(Finite Element Analysis). The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for the midsole and the outsole are obtained, respectively. It can be concluded that results obtained by FEM in the midsole and the outsole are different depending on the characteristic of elastomer The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.

Heat Transfer Analysis and Design of Shoes Using Finite Element Method (유한요소법을 이용한 신발의 열전달 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.206-212
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with coolant in the insole. The golf shoes are modeled using the finite element method for precision by considering the configuration by the insole, the midsole and the outsole, which compose the golf shoes. The values of standard human foot temperature for heat transfer boundary conditions are adopted for the FEA(Finite Element Analysis). By the commercial FEM software for heat transfer analysis, MARC V7.3, the temperature and the amounts of heat flux change for the insole are obtained, respectively. It can be concluded that results obtained by FEM in the insole are different depending on the characteristic of heat transfer. The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.