• 제목/요약/키워드: finite element impact analysis

Search Result 801, Processing Time 0.025 seconds

Development of Finite Element Model of Hybrid III 5th Percentile Female Dummy (Hybrid III 5% 성인 여성 더미의 유한요소 모델 개발)

  • Yi, Sang-Il;Mohan, Pradeep K.;Kan, Cing-Dao Steve;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-30
    • /
    • 2010
  • As the automobile industry is developing, the number of deaths and injuries has increased. To reduce the damages from automobile accidents, the government of each country proposes experimental conditions for reproducing the accident and establishes the vehicle safety regulations. Automotive manufacturers are trying to make safer vehicles by satisfying the requirements. The Hybrid III crash test dummy is a standard Anthropomorphic Test Device (ATD) used for measuring the occupant's injuries in a frontal impact test. Since a real crash test using a vehicle is fairly expensive, a computer simulation using the Finite Element Method (F.E.M.) is widely used. Therefore, a detailed and robust F.E. dummy model is needed to acquire more accurate occupant injury data and behavior during the crash test. To achieve this goal, a detailed F.E. model of the Hybrid III 5th percentile female dummy is constructed by using the reverse engineering technique in this research. A modeling process is proposed to construct the F.E. model. The proposed modeling process starts from disassembling the physical dummy. Computer Aided Design (CAD) geometry data is constructed by three-dimensional (3-D) scanning of the disassembled physical dummy model. Based on the geometry data, finite elements of each part are generated. After mesh generation, each part is assembled with other parts using the joints and rigid connection elements. The developed F.E. model of dummy is simulated based on the FMVSS 572 validation regulations. The results of simulation are compared with the results of physical tests.

Aircraft Impact Analysis of Steel Fiber Reinforced Containment Building (강섬유를 적용한 원전 격납건물의 항공기 충돌해석)

  • Seo, Dong Won;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2013
  • In this study, the structural performance of nuclear power plant containment buildings, which are made of steel fiber reinforced concrete(SFRC) and subject to aircraft crash, is examined by finite element analyses. The applied loads by aircraft crash against the buildings are modeled using Riera impact load function and by the varying aircraft contact area with respect to time. CSCM concrete model in LS-DYNA is employed to model SFRC. The parameters for the material model are determined from SFRC strength prediction models. Based on the volume ratio of steel fiber in SFRC, the structural performance of nuclear containment buildings subject to aircraft crash are analysed using a commercial finite element analysis program LS-DYNA. The safety assessments of the buildings subject to the crash are discussed and the effectiveness of SFRC for nuclear power plant containment building on the increase of aircraft crash resistance is also evaluated.

Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure (해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법)

  • Lee, Kang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.490-496
    • /
    • 2012
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in offshore wind turbine on impact of barge. The collision between offshore wind turbine and barge is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all effects and sequences during the collision. On applying the impact force of a barge to the offshore wind turbine, the maximum acceleration, internal energy, and plastic strain are calculated for each load case using the finite element method. A parametric study is conducted with the experimental data in terms of the velocity of barge, thickness of the offshore wind turbine, and thickness and Mooney-Rivlin coefficient of the rubber fender. Through the analysis proposed in this study, it is possible to determine the proper size and material properties of the rubber fender and the optimal moving conditions of barge.

The Study of Simulation Dynamic Behavior of CFRP Structural Members (CFRP 구조 부재의 시뮬레이션 동적 거동에 관한 연구)

  • Kim, Jung-Ho;Bang, Jung-Min;Kim, Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.561-565
    • /
    • 2011
  • The structural vehicles are steel members of square or circle tube with definite shape. These members support various components and absorb impact energy to protect passengers during accidentswhen crash happen. Structural members need to be lightweight and stable. In this study, we do an impact simulation of a CFRP square member using finite element analysis program Ls-Dyna in order to predict fracture shape and energy absorb feature of CFRP member. Also, we make square member shape of CFRP and do an impact experiment. We compare the analytical and experimental results and consider the fracture shape and energy features of CFRP members.

FE Analysis of Exterior Wide Beam-Column Connections with Bonded Tendon Stress (부착된 프리스트레스 넓은 보-기둥 외부접합부의 유한요소해석)

  • Lee, Moon-Sung;Choi, Yun-Cheul;Lim, Jaei-Hyung;Moon, Jeong-Ho;Choi, Chang-Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.307-315
    • /
    • 2008
  • Post-tensioned precast concrete system (PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with the topping concrete on the PC shell beam and post-tensioning. Nonlinear analysis was conducted, using ANSYS, a finite-element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses for post-tensioned wide beam-column connections. In this analysis, the Solid 65 element was used, in which concrete element had 8 nodes and each node had 3 degrees of freedomIn. Solid 65, the shear-transfer factor reflects a decrease of shear strength for the positions with cracks, as an impact factor to make the analysis value approximate the experiment value. In this study, the behavior of test specineus were most closely predicted to the experimental results, when the shear-transfer coefficient 0.85 was used for a closed crack, and 0.2 was used for an open crack.

Noise and Vibration Characteristics of Floor Impact in a Test Building (표준실험동에서의 소음.진동 특성)

  • Jeong, Young;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

A Study of Impact Resistance for Concrete Segmented Composites (콘크리트 분절 복합체의 충격저항 성능에 관한 연구)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.13-14
    • /
    • 2009
  • Segmented composite is known that resists at static and impact load well. In this study, segmented composite was evaluated by static and impact load test. Additionally, finite element analysis method was employed and optimal mix of mortar was developed. Therefore, impact resistance shows aspect that is influenced by interaction of interface and layout of segmented blocks.

  • PDF

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Design on a new oil well test shock absorber under impact load

  • Wang, Yuanxun;Zhang, Peng;Cui, Zhijian;Chen, Chuanyao
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.335-352
    • /
    • 2008
  • Continuous operation of test and measurement is a new operating technique in the petroleum exploitation, which combines perforation with test and measurement effectively. In order to measure the original pressure of stratum layer exactly and prevent testing instrument from being impaired or damaged, a suitable shock absorber is urgently necessary to research. Based on the attempt on the FEM analysis and experiment research, a new shock absorber is designed and discussed in this paper. 3D finite element model is established and simulated accurately by LS-DYNA, the effect and the dynamic character of the shock absorber impact by half sinusoidal pulse force under the main lobe frequency are discussed both on theoretics and experiment. It is shown that the new designed shock absorber system has good capability of shock absorption for the impact load.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.