• Title/Summary/Keyword: finite element impact analysis

Search Result 801, Processing Time 0.035 seconds

A Study on the Transient Response and Impact Coefficient Calculation of PCB Handler (PCB Handler의 과도응답해석 및 충격계수 산출 연구)

  • Lee, Byoung-Hwa;Kwon, Soon Ki;Koh, Man-Soo
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.223-229
    • /
    • 2017
  • Europe, the US and Japan have acquired test results on impact coefficient for a long time and applied it to equipment design to secure safety of structures. However, Korean enterprises use the impact factor held by advanced business to design equipment as it is difficult for them to obtain it through tests. In this paper, NX/NASTRAN, was used to perform static load analysis and impact load analysis of a PCB Handler, semiconductor test equipment, and the result was employed to study how to calculate the impact coefficient with the finite element analysis. The calculation method was applied to the JIS(Japanese Industrial Standard), and the impact coefficient of the PCB handler was calculated as 1.27 for the sudden start or stop. The impact coefficient generated by the analysis is expected to make a great contribution to the industry as it can be used to improve the equipment structure and develop on existing equipment in the future.

Numerical Computation of the Stress Itensity Factor of A Cracked Viscoelastic Body Under the Impact Load (충격하중을 받는 점탄성 균열의 응력확대계수 계산)

  • Lee Sung-Hee;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1583-1589
    • /
    • 2004
  • In this paper, A new finite element method for the time domain analysis of the dynamic stress intensity factor of two-dimensional viscoelastic body with a stationary central crack under the transient dynamic load is presented, which is based on the intergrodifferential equations of motion in the isotropic linear viscoelasticity and the Galerkin's method. The vlscoelastic material is assumed to be elastic in dilatation and behaves like a standard linear solid in shear. As a numerical example, the Chen's problem in viscoelastodynamic version is solved for the parametric study about the effect of viscosity and relaxation time on the dynamic stress intensity factor.

Finite Element and Experimental Modal Analyses of Multiple Thin-Disked Flexible Spindle Systems (다중 박 원판을 갖는 유연 회전축계의 유한 요소 및 실험적 모드 해석)

  • 임승철;제인주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1029-1035
    • /
    • 1999
  • This paper relates to the flexural vibration analysis of slender spindle systems with multiple thin disks, supported by the ball bearings by means of the finite element method. Each system component is analytically modeled taking into account its flexibility and also the centrifugal effect especially for the disk. In order to show the rapid convergence rate and accuracy of the proposed approach, an experimental set-up is built to be versatile. In two distinct cases, its natural modes are numerically computed using only a small number of total element meshes as the shaft rotational speed is varied, and verified through experimental frequency response function obtained by the impact test.

  • PDF

New reliability framework for assessment of existing concrete bridge structures

  • Mahdi Ben Ftima;Bruno Massicotte;David Conciatori
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.399-409
    • /
    • 2024
  • Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A "shifted" reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

Numerical Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 해석적 특성평가)

  • Lee, Jun-Whan;Kim, Tae-Woo;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.305-313
    • /
    • 2007
  • The aim of present paper is to investigate the dynamic strength characteristics of LNG cargo containment system under sloshing impact loads numerically. The dynamic stress transmission mechanism under the impact load was analyzed based on the dynamic Finite Element Analysis. Based on the insights obtained from the numerical studies, the characteristics of internal stress distribution and stress concentration have been reported. The material option including anisotropic material features required for the commercial FEA code application were suggested based on the comparison with the experimental results.

Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method (유한요소법을 이용한 유기압 현수장치의 열전달 해석)

  • Bae, Jing-Do;Cho, Jin-Rae;Lee, Hong-Woo;Song, Jung-In;Lee, Jin-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

Detemination of Dynamic Stress Intensity Factor of Brittle Materials under Impact Loading (충격하중을 받는 취성재료의 동적응력확대계수 결정)

  • 이억섭;이찬석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.381-386
    • /
    • 1993
  • This paper describes the dynamic fracture behavior of brittle materials under impact loading by using INSAMCR program with instrumented charpy test machine. To calculate the Dynamic Stress Intensity Factor The finite element analysis methods program, INSAMCR, was used. Dynamic fracture characteristic was researched to verify a relationship between Dynamic Stress Intensity Factor and crack tip propagation velocity in WC-6%Co. The relationship between Dynamic Stress Intensity Factor and crack tip velocity revealed typical .GAMMA. shape. INSAMCR was run to verify experimental results in WC-6%Co and shows a good coincidence.

  • PDF

An Experimental Study on the Free Vibration of the Steel and Composite Cylindrical Shells with Simply Supported Edge Conditions (단순지지된 Steel 및 복합재료 원통셸의 진동에 대한 실험적 고찰)

  • 이영신;최명환;길기남;송근영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.334-339
    • /
    • 1998
  • The free vibration analysis of the simply supported steel and composite cylindrical shells are investigated. The natural frequencies and mode shapes of the shell are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the material and geometry on the vibrational characteristics of the shell are examined. The experimental results are compared with the analytical and a finite element results. They showed good agreement with each other.

  • PDF

The Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.1.1-4
    • /
    • 1999
  • The toughening mechanism and fracture behavior of rubber/polymer composites were investigated with respect to two factors; (1) the composition ratio of polymers(PPO and PS which have a different chain flexibility) and (ii) the rubber particle size in PPO/PS blend system Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted, Finite element analysis were carried out to gain understanding of plastic deformation(shear yielding and crazing) of these materials.

  • PDF