• Title/Summary/Keyword: finite element beam model

Search Result 938, Processing Time 0.029 seconds

System Identification for Structural Vibration of Layered Stone Pagoda System (적층식 석탑의 진동 시스템 인식)

  • Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.237-244
    • /
    • 2017
  • This study proposes a numerical model to explain the closely placed double modes in the vibration of a layered stone pagoda system. The friction surface between the stones is modelled as the Timoshenko finite element while each stone layer is modelled as a rigid body. It is assumed that the irregular asperity on the friction surface enables the stone to be excited. This results in the closely placed modes that are composed of natural modes and self-excited modes. To examine the validity of the proposed model, a set of modal testing and analysis for a layered stone pagoda mock-up model has been conducted and a set of closely placed double modes are extracted. Applying the extended sensitivity-based system identification technique, the various system parameters are identified so that the modal parameters of the proposed numerical model are the same with those of the experimental mock-up. For a horizontal impulse excitation, the simulated acceleration responses are compared with measurements.

Characterization of elastic properties of pultruded profiles using model updating procedure with vibration test data

  • Cunha, Jesiel;Foltete, Emmanuel;Bouhaddi, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.481-500
    • /
    • 2008
  • In this paper, a model updating technique in dynamics is used to identify elastic properties for pultruded GFRP-Glass Fiber Reinforced Plastic framed structural systems used in civil construction. Traditional identification techniques for composite materials may be expensive, while this alternative approach allows to identify several properties simultaneously, with very good precision. Furthermore, the procedure of a non-destructive type has a relatively simple implementation. Properties describing the mechanical behavior for beam and shell finite element modeling are identified. The used formulation is based on the minimization of eigensolution residuals. Important points concerning model updating procedures have been observed, such as the particular vibrational behavior of the test structure, the modeling strategies and the optimal placement of the sensors in the experimental procedure. Results obtained by experimental tests show the efficiency of the proposed procedure.

Crankshaft Stiffness Matrix Construction for the Vibration Analysis Coupled with Torsional and Axial Directions of a Marine Engine Shaft System (박용엔진 축계 비틀림/종 연성진동 해석을 위한 크랭크 축 강성행렬 구축)

  • Kim, Won-Jin;Jeon, Min-Kyu;Jeong, Dong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.55-61
    • /
    • 1999
  • The torsional and axial vibrations of shaft system have been calculated independently because of both the limitation of computing time and the complexity of crankshaft model. In actual system, however, the torsional and axial vibrations are coupled. Therefore, in recent, many works in the coupled vibration analysis have been done to find out the more exact dynamic behavior of shaft system. The crankshaft model is very important in the vibration analysis of shaft system because most of excitation forces act on the crankshaft. It is, however, difficult to establish an exact model of crankshaft since its shape is very complex. In this work, an efficient method is proposed to construct the stiffness matrix of crankshaft using a finite element model of half crankthrow. The proposed and existing methods are compared by applying to both a simple thick beam with circular cross section and an actual crankshaft.

  • PDF

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Characterization of the main component of equal width welded I-beam-to-RHS-column connections

  • Lopez-Colina, Carlos;Serrano, Miguel A.;Lozano, Miguel;Gayarre, Fernando L.;Suarez, Jesus M.;Wilkinson, Tim
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.337-346
    • /
    • 2019
  • The present paper tries to contribute fill the gap of application of the component method to tubular connections. For this purpose, one typical joint configuration in which just one component can be considered as active has been studied. These joints were selected as symmetrically loaded welded connections in which the beam width was the same as the column width. This focused the study on the component 'side walls of rectangular hollow sections (RHS) in tension/compression'. It should be one of the main components to be considered in welded unstiffened joints between I beams and RHS columns. Many experimental tests on double-sided I-beam-to-RHS-column joint with a width ratio 1 have been carried out by the authors and a finite element (FE) model was validated with their results. Then, some different analytical approaches for the component stiffness and strength have been assessed. Finally, the stiffness proposals have been compared with some FE simulations on I-beam-to-RHS-column joints. This work finally proposes the most adequate equations that were found for the stiffness and strength characterization of the component 'side walls of RHS in tension/compression' to be applied in a further unified global proposal for the application of the component method to RHS.

Static behavior of bolt connected steel-concrete composite beam without post-cast zone

  • Xing, Ying;Zhao, Yun;Guo, Qi;Jiao, Jin-feng;Chen, Qing-wei;Fu, Ben-zhao
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.365-380
    • /
    • 2021
  • Although traditional steel-concrete composite beams have excellent structural characteristics, it cannot meet the requirement of quick assembly and repair in the engineering. This paper presents a study on static behavior of bolt connected steel-concrete composite beam without post-cast zone. A three-dimensional finite element model was developed with its accuracy and reliability validated by available experimental results. The analysis results show that in the normal service stage, the bolt is basically in the state of unidirectional stress with the loss of pretightening can be ignored. Parametric studies are presented to quantify the effects of the post-cast zone, size and position of splicing gap on the behavior of the beam. Based on the studies, suggested size of gap and installation order were proposed. It is also confirmed that optimized concrete slab in mid-span can reduce the requirement of construction accuracy.

An experimental and numerical study on the local buckling of cold-formed steel castellated I-Beam stiffened with oval castellation

  • S. Prabhakaran;R. Malathy;M. Kasiviswanathan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.143-157
    • /
    • 2024
  • Cold-formed steel (CFS) I sections are increasingly being used as load-bearing components in building constructions, and such I sections frequently incorporate web holes to facilitate service installation. The economical and structural advantages of these elements have prompted many researchers to investigate the behavior of such structures. Despite numerous studies on the buckling stability of castellated beams, there is a notable absence of experimental investigation into oval castellated beams with stiffeners. This study examines the local buckling of cold-formed steel castellated I-beams stiffened with oval constellations through experimental and numerical analysis. Four specimens are fabricated with and without stiffeners, including parallel, perpendicular, and intersecting types attached to the web portion of the beam, along with cross stiffeners for the oval-shaped openings at the beam ends. Additionally, a numerical model is developed to predict the behavior of castellated beams with oval openings up to failure, considering both material and geometric nonlinearities. Codal analysis is performed using the North American specification for cold-formed steel AISI S-100 and the Australian/New Zealand design code AS/NZS 4600. The anticipated outcomes from numerical analysis, experimental research, and codal analysis are compared and presented. It will be more helpful to the preliminary designers.

Numerical Analysis Models for Jointless Bridges Through Sensitivity Analysis (민감도 해석을 통한 무조인트 교량의 수치해석 모델 제안)

  • Noh, Chi-Oug;Kim, Seung-Won;Lee, Hwan-Woo;Nam, Moon-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.255-262
    • /
    • 2021
  • In this study, a jointless bridge that integrates the superstructure and abutment without installing an expansion joint was analyzed. An example of a jointless bridge that has been introduced in Korea since 2009. Owing to the short period of use and lack of experience in design, construction, and maintenance, there is insufficient information regarding the long-term behavior of jointless bridges. When analyzing numerous bridges, the numerical analysis model must maintain the numerical values used and ensure the convenience of model construction. In this study, sensitivity analysis was performed to select a numerical model for various types of jointless bridges using commercial finite element programs, MIDAS Civil and ABAQUS 2018. According to a solid element-based model, we analyzed the mean and maximum relative errors between structural models. Consequently, it was found that the beam element-based model exhibits a significantly small relative error in comparison to the shell element, where a relatively large error was recorded. Therefore, the optimal numerical analysis model, a practical model that maintains the similarity and precision of the displacement shape cause by relative error, was judged to be the most suitable for jointless bridges based on the shell element.

Tests of integrated ceilings and the construction of simulation models

  • Lyu, Zhilun;Sakaguchi, Masakazu;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.381-395
    • /
    • 2019
  • This paper proposes a new approach to model the screw joints of integrated ceilings via the finite element method (FEM). The simulation models consist of the beam elements. The screw joints used in the main bars and cross bars and in the W bars and cross bars are assumed to be rotation springs. The stiffness of the rotation springs is defined according to the technical standards proposed by the National Institute for Land and Infrastructure Management of Japan. By comparing the results of the sheer tests and the simulation models, the effectiveness and efficiency of the simulation models proposed in this paper are verified. This paper indicates the possibility that the seismic performance of suspended ceilings can be confirmed directly via beam element models using FEM if the stiffnesses of the screw joints of the ceiling substrates are appropriately defined. Because cross-sectional shapes, physical properties, and other variables of the ceiling substrates can be easily changed in the models, it is expected that suspended ceiling manufactures will be able to design and confirm the seismic performance of suspended ceilings with different cross-sectional shapes or materials via computers, instead of spending large amounts of time and money on shake table tests.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.