• Title/Summary/Keyword: finite element beam model

Search Result 938, Processing Time 0.021 seconds

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.373-393
    • /
    • 2014
  • A finite element model for predicting the entire nonlinear behavior of reinforced high-strength concrete continuous beams is described. The model is based on the moment-curvature relations pre-generated through section analysis, and is formulated utilizing the Timoshenko beam theory. The validity of the model is verified with experimental results of a series of continuous high-strength concrete beam specimens. Some important aspects of behavior of the beams having different tensile reinforcement ratios are evaluated. In addition, a parametric study is carried out on continuous high-strength concrete beams with practical dimensions to examine the effect of tensile reinforcement on the degree of moment redistribution. The analysis shows that the tensile reinforcement in continuous high-strength concrete beams affects significantly the member behavior, namely, the flexural cracking stiffness, flexural ductility, neutral axis depth and redistribution of moments. It is also found that the relation between the tensile reinforcement ratios at critical negative and positive moment regions has great influence on the moment redistribution, while the importance of this factor is neglected in various codes.

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah;Gulcu, Saban
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.633-642
    • /
    • 2020
  • Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Roll Forming Analysis for High Strength Steel Bumper Process (고장력강 범퍼 빔의 롤 포밍 공정)

  • Kim, Dong Hong;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes

  • Nikkar, Abed;Rouhi, Saeed;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.

Analysis and Fabrication of the Mode Conversion Type Ultrasonic Motor Using Finite Element Method (유한요소법을 이용한 모드변환형 초음파 모터의 해석 및 제작)

  • Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.23-26
    • /
    • 2003
  • An ultrasonic motor is a motor which uses vibration -a type of elastic vibration- to obtain a driving force, which then drives the motor using friction. In this paper, mode conversion type - single resonance mode ultrasonic rotary motor that use langevin type ultrasonic vibrator was studied. This model was proposed for the first time by Japanese Kumada in 1985. In this study, finite element analysis (FEA) of a stator and bidirectional driving characteristic of a rotor was newly obtained. The amplitude and phase of displacement and elliptical trajectory of beam was confirmed by FEA The fabricated motor was operated to clockwise and counterclockwise in 40.8 [kHz] and 44.2 [kHz] respectively. But bidirectional driving characteristics did not coincide each other.

  • PDF

Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method

  • Manna, M.C.;Bhattacharyya, R.;Sheikh, A.H.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.889-903
    • /
    • 2010
  • Idea of using piezoelectric materials with flexible structures made of rubber-like materials is quite novel. In this study a non-linear finite element model based on updated Lagrangian (UL) approach has been developed for dynamic response and its control of rubber-elastic material with surface-bonded PVDF patches/layers. A compressible stain energy density function has been used for the modeling of the rubber component. The results obtained are compared with available analytical solutions and other published results in some cases. Some results are reported as new results which will be useful for future references since the number of published results is not sufficient.

Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method

  • Taherinasab, Mohammad;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.151-173
    • /
    • 2020
  • This paper aims to probabilistically evaluate performance of two types of I beam to box column (IBBC) connection. With the objective of considering the variability of seismic loading demand, statistical features of the inter-story drift ratio corresponding to the second, fifth and eleventh story of a 12-story steel special moment resisting frames are extracted through incremental dynamic analysis at global collapse state. Variability of geometrical variables and material strength are also taken into account. All of these random variables are exported as inputs to a probabilistic finite element model which simulates the connection. At the end, cumulative distribution functions of local seismic demand for each component of each connection are provided using histogram sampling. Through a parametric study on probabilistic local seismic demand, the influence of some geometrical random variables on the performance of IBBC connections is demonstrated. Furthermore, the probabilistic study revealed that IBBC connection with widened flange has a better performance than the un-widened flange. Also, a design procedure is proposed for WF connections to achieve a same connection performance in different stories.