• Title/Summary/Keyword: finite element beam model

Search Result 938, Processing Time 0.025 seconds

Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates (동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석)

  • Park, Young-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis (유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구)

  • Kim, Yeeun;Kim, Hyewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.

Numerical analysis of RC hammer head pier cap beams extended and reinforced with CFRP plates

  • Tan, Cheng;Xu, Jia;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.461-470
    • /
    • 2020
  • This paper presents a numerical study on structural behavior of hammer head pier cap beams, extended on verges and reinforced with carbon fiber reinforced polymer (CFRP) plates. A 3-D finite element (FE) model along with a simplified analytical model are presented. Concrete damage plasticity (CDP) was adapted in the FE model and an analytical approach predicting the CFRP anchor strength was adapted in both FE and analytical model. Total five quarter-scaled pier cap beams with various CFRP reinforcing schemes were experimentally tested and analyzed with numerical approaches. Comparison between experimental results, FE results, analytical results and current ACI guideline predictions was presented. The FE results showed good agreement with experimental results in terms of failure mode, ultimate capacity, load-displacement response and strain distribution. In addition, the proposed strut-and-tie based analytical model provides the most accurate prediction of ultimate strength of extended cap beams among the three numerical approaches.

Response prediction of a 50 m guyed mast under typhoon conditions

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.397-412
    • /
    • 2006
  • This paper presents the wind excited acceleration responses of a 50 m guyed mast under the action of Typhoon Dujuan. The response of the structure is reconstructed from using a full finite element model and an equivalent beam-column model. The wind load is modelled based on the measured wind speed and recommendations for high-rise structures. The nonlinear time response analysis is conducted using the Newton Raphson iteration procedure. Comparative studies on the measured and computed frequencies and acceleration responses show that the torsional vibration of the structure is significant particularly in the higher vibration modes after the first few bending modes. The equivalent model, in general, gives less accurate amplitude predictions than the full model because of the omission of torsional stiffness of the mast in the vibration analysis, but the root-mean-square value is close to the measured value in general with an error of less than 10%.

Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.645-663
    • /
    • 2015
  • Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. Though the method showed good performance on beam-like structures, it has inherent limitation in applying to more general types of bridges that may have complex shapes, because it uses assumed analytical (sinusoidal) mode shapes to map the measured strain into displacement. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure rather than using the assumed sinusoidal mode shapes. The performance of the proposed method is evaluated by numerical simulations on a deck arch bridge model and a three-span truss bridge model whose mode shapes are difficult to express as analytical functions. The displacements are estimated by acceleration-based method, strain-based method, acceleration-strain-based method, and the improved method. Then the results are compared with the exact displacement. An experimental validation is also carried out on a prestressed concrete girder bridge. The proposed method is found to provide the best estimate for dynamic displacements in the comparison, showing good agreement with the measurements as well.