• 제목/요약/키워드: finite element analysis of FRP

검색결과 128건 처리시간 0.026초

FRP로 전단보강된 철근콘크리트 보의 비선형 해석 (Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites)

  • 김상우;황현복;이범식;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.835-838
    • /
    • 2008
  • 이 연구에서는 FRP(fiber reinforced polymer)로 전단보강된 철근콘크리트(RC) 보의 전단거동을 예측하기 위하여 비선형 유한요소해석을 수행한다. FRP로 전단보강된 RC 보의 유한요소해석을 위하여 이 논문에서는 FRP에 대한 모델링 개념을 소개하며, RC 보와 FRP, 그리고 콘크리트와 FRP 사이의부착 특성을 나타낼 수 있는 수치해석기법을 사용한다. 제안된 모델링 기법에 따라, DSFM에 바탕을둔 2차원 비선형 유한요소해석 프로그램인 VecTor2를 이용하여 유한요소해석을 수행한다. 또한 FRP 로 전단보강된 RC 보의 거동에 대한 DSFM의 적용성을 검증하기 위하여 수치해석결과와 실험결과를 상세히 비교한다.

  • PDF

Nonlinear finite element modeling of FRP-wrapped UHPC columns

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.413-429
    • /
    • 2013
  • The primary aim of this study is to develop a three dimensional finite element (FE) model to predict the axial stress-strain relationship and ultimate strength of the FRP-wrapped UHPC columns by comparing experimental results. The reliability of four selected confinement models and three design codes such as ACI-440, CSA-S806-02, and ISIS CANADA is also evaluated in terms of agreement with the experimental results. Totally 6 unconfined and 36 different types of the FRP-wrapped UHPC columns are tested under monotonic axial compression. The values of ultimate strengths of FRP-wrapped UHPC columns obtained from the experimental results are compared and verified with finite element (FE) analysis results and the design codes mentioned above. The concrete damage plasticity model (CDPM) in Abaqus is utilized to represent the confined behavior of the UHPC. The results indicate that agreement between the test results and the non-linear FE analysis results is highly satisfactory. The CSA-S806-02 design code is considered more reliable than the ACI-440 and the ISIS CANADA design codes to calculate the ultimate strength of the FRP-wrapped UHPC columns. None of the selected confinement models that are developed for FRP-wrapped low and normal strength concrete columns can safely predict the ultimate strength of FRP-wrapped UHPC columns.

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

직교이방성 판이론에 의한 FRP 보강 콘크리트 슬래브의 휨해석 (An Analytical Investigation on the Flexural Behavior of FRP Reinforced Concrete Slab by Orthotropic Plate Theory)

  • 손경욱;정재호;정상균;윤순종;이승식
    • Composites Research
    • /
    • 제17권2호
    • /
    • pp.9-14
    • /
    • 2004
  • 본 연구는 FRP 보강 콘크리트 슬래브의 휨거동에 관한 이론적 연구로서 FRP 보강 콘크리트 슬래브를 구조적 직교이방성판으로 간주하고 고전적 직교이방성판이론에 따른 휨해석 및 유한요소해석을 수행하였다. FRP 보강 콘크리트 슬래브를 직교이방성판으로 모델링하기 위해서는 각 하중한대별로 실제 구조물의 거동에 부합하는 직교이방성판의 휨강성을 결정하는 것이 중요하다. 본 연구에서는 탄성등가법을 적용하여 FRP 보강 콘크리트 슬래브와 등가인 직교이방성판의 휨강성을 결정하였으며, 탄성등가법에 의해 결정된 휨강성을 사용하여 유한요소해석 수행을 위한 강성행렬의 결정방법을 제안하였다. 또한, 이론식에 의한 해석결과와 제안된 강성행렬을 사용하여 해석한 유한요소해석 결과를 실험결과와 비교하였다.

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

부유식 태양광 에너지 발전시설의 개발 (Development of the Floating Type Photovoltaic Energy Generation System)

  • 최훈;주형중;남정훈;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제1권1호
    • /
    • pp.16-26
    • /
    • 2010
  • In this paper, we present the result of investigations pertaining to the development of the floating type photovoltaic energy generation system. Pultruded FRP has superior mechanical and physical properties compared with those of conventional structural materials. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. In the paper, we discussed the development concepts of the floating type photovoltaic energy generation system, briefly. The mechanical properties of the FRP structural member used in the development are investigated through the tensile and compression tests. Test results are used in the finite element analysis and the design of the system. In addition, bolted connections of the members are briefly discussed and the strengths of FRP bolted connections are estimated based on the results of experiments. The experimental results are compared with the finite element analysis results and discussed briefly. The floating type photovoltaic energy generation system is designed, fabricated, and installed successfully in site.

  • PDF

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

충전형 FRP 합성박스 모듈의 압축파괴 거동 분석 (Analysis of Compressive Fracture Behavior of Filled FRP Composite Box Module)

  • 김호선;장화섭;이호현;윤국현
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 연구는 다양한 건설 구조물 중 휨 응력을 받는 부재인 슬래브, 거더 등에 FRP(Fiber Reinforced Polymer) 박스부재를 적용하기 위한 기초 실험적 연구이다. 조립이 가능한 FRP 부재를 제작하여 FRP 박스부재의 대형단면으로서의 연결 후 압축파괴 거동 특성을 분석하기 위하여 다양한 조건으로 실험을 수행하였다. FRP 박스부재의 상부에 충진재와 하중재하 방법 및 연결형태에 따른 압축파괴 거동 실험을 실시하였으며, 이를 이용하여 유한요소해석을 수행하였다. 해석결과를 실험결과와 비교한 결과 강성이 약간 낮게 조사되었으나 시험체의 파괴지점에 응력이 집중되는 것을 확인할 수 있었다.