• Title/Summary/Keyword: finite dimensional subspace

Search Result 27, Processing Time 0.022 seconds

SIX SOLUTIONS FOR THE SEMILINEAR WAVE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2012
  • We get a theorem which shows the existence of at least six solutions for the semilinear wave equation with nonlinearity crossing three eigenvalues. We obtain this result by the variational reduction method and the geometric mapping defined on the finite dimensional subspace. We use a contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three-dimensional subspace with three axes spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one-dimensional subspace.

GEOMETRIC RESULT FOR THE ELLIPTIC PROBLEM WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.507-515
    • /
    • 2012
  • We investigate the number of the solutions for the elliptic boundary value problem. We obtain a theorem which shows the existence of six weak solutions for the elliptic problem with jumping nonlinearity crossing three eigenvalues. We get this result by using the geometric mapping defined on the finite dimensional subspace. We use the contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three dimensional subspace with three axis spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one dimensional subspace.

FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH SQUARE GROWTH NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • We give a theorem for the existence of at least three solutions for the fourth order elliptic boundary value problem with the square growth variable coefficient nonlinear term. We use the variational reduction method and the critical point theory for the associated functional on the finite dimensional subspace to prove our main result. We investigate the shape of the graph of the associated functional on the finite dimensional subspace, (P.S.) condition and the behavior of the associated functional in the neighborhood of the origin on the finite dimensional reduction subspace.

ASYMPTOTICALLY LINEAR BEAM EQUATION AND REDUCTION METHOD

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.481-493
    • /
    • 2011
  • We prove a theorem which shows the existence of at least three ${\pi}$-periodic solutions of the wave equation with asymptotical linearity. We obtain this result by the finite dimensional reduction method which reduces the critical point results of the infinite dimensional space to those of the finite dimensional subspace. We also use the critical point theory and the variational method.

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

REDUCTION METHOD APPLIED TO THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • We consider the semilinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the semilinear biharmonic boundary value problem. We show this result by using the critical point theory, the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2010
  • We investigate the number of the nontrivial solutions of the nonlinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the nonlinear biharmonic problem. We prove this result by the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

Best simulaneous approximations in a normed linear space

  • Park, Sung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.367-376
    • /
    • 1996
  • We characterize best simultaneous approximations from a finite-dimensional subspace of a normed linear space. In the characterization we reveal usefulness of a minimax theorem presented in [2,4].

  • PDF

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

  • JANG, HO-JONG;YOUN, KIHANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian splitting preconditioner for the numerical solution of saddle point problems arising from the steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iteration and discretized with the finite element and finite difference schemes on two-dimensional and three-dimensional domains. We report strong scalability results for up to 32 cores.