• Title/Summary/Keyword: finishing material

Search Result 668, Processing Time 0.032 seconds

Drawing Behavior and Characterization of Recycled Polyester Yarn (재활용 폴리에스터 원사의 연신거동 및 특성분석)

  • Jungeon Lee;Tae Young Kim;Jae Min Park;Eun A Bae;Young Hun Kim;Jae Hoon, Jung;Youngkwon Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.169-178
    • /
    • 2023
  • The extended use of polyester nowadays has increased the amount of waste polyester (PET) released into the environment. Although these materials don't directly harm living things or the ecosystem, their inability to biodegrade remains one of the major global threats, driving up the amount of solid waste made up of PET. Environmental concerns have approved an increasing interest in recycled PET however the production of recycled PET with sufficient mechanical properties is still a challenge. Recycled Polyester (rPET) yarns are inexpensive and have the potential to acquire better mechanical characteristics through physical treatments, particularly by using technically simple method like uniaxial drawing. This study inspected the drawn behavior of virgin PET yarns and rPET yarns under various drawing parameters by first analyzing the initial material characteristics of both yarn. The impact of stretching on mechanical and morphological properties was also investigated. The results showed that virgin PET has better properties than rPET yarn; however, mechanical properties resembling virgin PET are achieved after optimizing the draw ratio.

Quality Control Techniques for Bare Concrete Floor Construction to Ensure Serviceability for Occupants (거주자 사용성 확보를 위한 콘크리트 맨바닥 시공 품질 관리 기법)

  • Mauk, Ji-wook;Choi, Kyung-suk;Kim, Jeong-jin;Seok, Won-kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.19-20
    • /
    • 2023
  • The pre-qualification system related to floor impact noise is considered ineffective, and thus, the introduction of a post-verification system is being prepared. This is because the performance, which was notarized in the qualification test due to various reasons, was not uniformly confirmed on building construction fields. Industry practitioners perceive that this is due to the influence of factors such as the flatness, levelness and/or thickness of the floor. However, it is very difficult to confirm such facts in a short period of time on the fields, and since the practical application of technology to measure and evaluate quantitatively and the establishment of a system are insufficient, it cannot be said to be a problem that can be brought to the surface. In fact, even when considering the conventional measurement of the dynamic modulus of elasticity, measurements are performed under controlled variables, such as placing a 200mm×200mm buffer material on a flat test-floor. However, in the fields, it is common to lay down larger productions(for example, 900mm×600mm) on the bare floor where significant variables are not controlled, and to construct finishing layers corresponding to the pre-qualified floor system without separately confirming the realization of the dynamic modulus of elasticity in the field conditions. In this study, spatial information of the bare floor on the field was measured and evaluated through a laser scanner. Technical methods for assessing the smoothness, flatness, and thickness of construction surfaces were reviewed, providing key insights for grading the quality of construction based on these criteria. Through further detailed and thorough investigations, it is expected that results suitable for practical application and systematization will be derived.

  • PDF

An Evaluation of Slip Coefficient in High Strength Bolt Joint using Zn/Al Metal Spray Corrosion Resistance Method (Zn/Al 금속용사 방식공법을 적용한 고력볼트 접합부의 미끄럼계수 평가)

  • Kim, Tae-Soo;Lee, Han-Seung;Tae, Sung-Ho;Ahn, Hyun-Jin;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.114-122
    • /
    • 2007
  • In high strength bolted joints, the corrosion of base material causes the reduction of slip resistance of the joints. In this study, tensile tests on slip-critical joints utilizing Zn/Al metal spraying corrosion resistance method were carried out in order to prevent the corrosion and meet the required mechanical characteristics of joints. In addition, slip coefficient and surface roughness were calculated. The key parameters were surface finishing condition and thickness of coating with the identical geometry in all specimens. From the results, it is found that the slip coefficient of the joints with coated finish after sand blast treatment as well as those of non-coated joints with only sand blast treatment were similar or superior to 0.45, which is a specification criteria of slip coefficient in friction-typed joints.

Preparation and Properties of Eco-friendly Waterborne Polyurethane-urea Primer for Thermoplastic Polypropylene Applied to Automobile Interiors (자동차 내장재용 열가소성 폴리프로필렌에 적용되는 선처리제용 친환경 수분산 폴리우레탄-우레아의 제조 및 성질)

  • Shin, Jong Sub;Park, Jin Myeong;Lee, Young Hee;Kim, Han Do
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • The significance of thermoplastic polyolefin polypropylene (PP) lies in its potential to replace polyvinyl chloride (PVC), the most widely used material for automobile interiors (door trim, dash board), which discharges harmful compounds in certain conditions. Another benefit of PP (0.855 amorphous - 0.946 crystalline $g/cm^3$) is its low density compared to that of PVC ($1.1-1.45g/cm^3$), which reduces vehicle weight. Market demand for eco-friendly water-based adhesive/coating material is rising significantly as a substitute for solvent-based adhesive/coating material which emits VOC and causes harmful working conditions. Under such context, in this study, a series of eco-friendly waterborne polyurethane-urea primer (a paint product that allows finishing paint to adhere much better than if it were used alone) for hydrophobic PP were prepared from different mix of DMPA content, NCO/OH molar ratio, various wt% of silicone diol and various soft segment content, among which DMPA of 21 mole %, NCO/OH molar ratio of 1.2, modified silicone diol of 5 wt% and soft segment content of 73 wt% led to good adhesion strength. Additionally, the incorporation of optimum content of additives (0.5 wt% dispersing agent, 0.5 wt% levelling agent, 1.5 wt% antifoaming agent, 3.0 wt% matting agent) into the optimum waterborne polyurethane-urea also enabled good stability, levelling, antifoaming and non-glossy.

SURFACE ROUGHNESS OF ESTHETIC RESTORATIVE MATERIALS BY POLISHING SYSTEMS (연마기구에 따른 심미 치아 수복재료의 표면 거칠기에 관한 비교 연구)

  • Park, Eun-Hae;Yang, Ku-Ho;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.520-529
    • /
    • 2003
  • Proper finishing and polishing of tooth restorations enhance the esthetics and the longevity of the restored tooth. The aims of this study were to identify an appropriate polishing system for each esthetic restorative material(Z250, Heliomolar, Dyract AP, Fuji II LC), and to compare the efficiency of polishing systems(Enhance, Sof-Lex, Composite). The control group remains untouched. The results were as follows: 1. There was no significant difference of surface roughness among the materials, while a roughness value of Z250 was the lowest of all. 2. The smoothest surface was produced by Mylar sheet on all materials. The polishing procedures, however, increased a roughness value. 3. The smoothest surfaces were produced by Sof-Lex, and there was significant difference of surface roughness between Sof-Lex and Enhance systems. 4. The smoother surfaces on the control group showed many scratches after the polishing procedures in the SEM findings.

  • PDF

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.

Odor Emission Reduction from Enclosed Growing-Finishing Pig House Using Different Biofilter Media (무창 육성$\cdot$비육돈사에서의 Biofilter에 의한 악취제어 효과)

  • Song J. I;Kim T. I.;Choi H. C.;Yoo Y. H.;Jeong J. W.;Yeon K. Y.;Barroga Antonio;Yang C. B.;Kim D. H.;Lee J. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • This study was conducted to determine the odor reduction efficiency of a biofilter desist using different filter materials. The summary of results are as follows; 1. The airflow penetration rate of the different filter materials namely; rice straw, woodchips, rice hulls and sawdust were 0.72 m/s, 0.64 m/s, 0.48 m/s and 0.17 m/s, respectively. 2. The elimination of $NH_3$ gas was fastest in the rice hull at a rate of 4 mg/${\iota}$ followed by sawdust, woodchips and rice straw at 3 mg/${\iota}$, 3 mg/${\iota}$ and 7 mg/${\iota}$, respectively. 3. The filter material made of wood chips was able to eliminate the offensive gas known as $H_2S$ at a rate of 2.2 mg/${\iota}$ on the 7th day, 17.6 mg/${\iota}$ on the 21st day but decreased to 10.7 mg/${\iota}$ on the 36th day. In contrast, the filter material composed of sawdust had a continuous increase in the reduction of $H_2S$ at a rate of 12.3 mg/${\iota}$ on the 7th day, 18.3 mg/${\iota}$ on the 21st day and 20.1 mg/${\iota}$ on the 36th day. The above findings indicated that among the filter materials, sawdust was the most effective in absorbing $H_2S$. Airflow penetration rate can be related to $H_2S$ odor elimination efficiency as shown by the slowest airflow rate of sawdust which is only 0.17 m/s.

  • PDF

Studies on Photoprotection of Walnut Veneer Exposed to UV Light (자외선 노출에 의한 Walnut 베니어의 광 변색 방지 연구)

  • Park, Se-Yeong;Hong, Chang-Young;Kim, Seon-Hong;Choi, June-Ho;Lee, Hyo-Jin;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.221-230
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of several chemical treatments to prevent photodegradation of wood veneer by external UV (Ultraviolet) light. Of woods, walnut veneer is selected as a raw material for this study since it is known as a luxurious wood with dark color giving an esthetic effect. Alcohol-benzene, hydrogen peroxide ($H_2O_2$) and sodium hypochlorite (NaClO) solution were used for investigate the effect on color stabilization. Despite the removal of the extractive compounds, which is known as a discoloration component, a significant color change of walnut wood veneer was observed. Meanwhile, the veneers treated by 20 and 30% $H_2O_2$ solution at $75^{\circ}C$ for 1 h also showed the no positive effect of color stability exposed to UV light although they have a bleaching effect on wood veneer. Besides, it was difficult to maintain the original color of walnut veneer due to the elution of the extractive compounds. On the other hands, the veneer treated by NaClO solution indicated the good performance on color stability despite of the intensive UV light test. However, when the concentration exceeds 3%, surface roughness and fiber damage occurred simultaneously. Therefore, the walnut species should be treated with proper concentration when sodium hypochlorite is applied to the veneer.

Earth Construction Interior Applied to Healing Space : Focused on Biophilic Design Concept of Oriental Medical Clinic Interior (치유공간에 적용한 흙건축 인테리어 -한의원인테리어의 바이오필릭(Biophilic)디자인개념을 중심으로-)

  • Jeon, Chan Hee;Hwang, Hey Zoo
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.42
    • /
    • pp.37-62
    • /
    • 2020
  • The earth is a natural material that has natural healing power,,as a natural ingredient, it brings environmental friendliness, emotional. In this Research, for one of the methods to expand the benefits as a healing space, Construction of the Earth design and earth construction methods have been actively used for effectiveness of the Earth in the construction of the interior with the oriental medical clinic. By utilizing the concept of biophilic design as a healing environment design, symbolizing nature such as color, light, plants, flowers, and natural materials such as earth and wood was directed as oriental medicine interiors. In addition, the space was divided according to the movement of patients and used different Earth construction method to each of the space for the distinction and differentiation according to the characteristics of each space. At this time, the Earth was constructed with materials and finishing materials that meet the highest grade of HB (Healthy Building), an eco-friendly building material certification grade without additives, so that the interior and medical treatment concept can be done at the same time. By using Earth as the basis of elements in the construction, and the design of healing space, patient the concept of Biophillic as a healing environment design. This may serve as a technical, aesthetic, and cultural basis for constructing a healing space by Earth in the future-oriented alternative, it may lead to necessity of eco-friendly and ecological architecture, and it may be an opportunity to expand the application area of earth in architectural design.

A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels (방음판의 흡음률 측정방법 제안을 위한 기초 연구)

  • Yang Ki Oh;Ha Geun Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.152-160
    • /
    • 2023
  • Sound barrier walls are the most basic way to cope with noise problems in urban residential environments. The most important acoustic function of sound insulation board is represented by sound transmission loss and sound absorption coefficient. However, Korea has not yet established a standard for measuring the sound absorption rate of sound insulation boards. In addition, even in the European standard, where the overall acoustic standard of soundproofing boards has already been established, the sound absorption rate is applied only to the standard for measuring the sound absorption rate of general building finishing materials, and a separate measurement method considering the characteristics of soundproof walls and soundproofing boards is not presented. The sound absorption coefficient should be evaluated by summing up the energy absorbed into the material as well as the energy transmitted through the material, but the current European standard has a problem in that the transmitted sound energy is not taken into account. In this paper, we reviewed the sound absorption coefficient measurement standards of sound insulation boards currently being presented, and verified the difference between the results and the new measurement method considering transmission sound for sound insulation boards actually used in Korea.