• Title/Summary/Keyword: fine roots

Search Result 115, Processing Time 0.027 seconds

Studies on Characteristics of Pinus densiflora Forest in Kangwon Province(III) - Studies on the Tree-Root Form and Distribution on the Campus Forest, Kangwon Nat'l Univ. - (강원도(江原道) 소나무림(林)의 특성(特性)에 관한 종합적(綜合的) 연구(硏究)(III) - 강원대학교(江原大學校) 구육림(構肉林)의 근계(根系) 형태(形態)와 분포(分布)에 대하여 -)

  • Chun, Kun-Woo;Oh, Jae-Man
    • Journal of Forest and Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.8-24
    • /
    • 1994
  • Because of the underground existence of roots, a few studies have been reported on root system. The developmental information of roots should be understood for the studies of specific tree traits and the influence of such traits on the soil surface fixation. In order to clarify the specific character of pine forest in Kangwon Province, the investigation on the form and distribution of root system of pine trees were carried out for 5 trees in the Campus Forest, Kangwon National Univ.. Root form was very well in flat root. As soil depth was approximatly 50cm, fine roots were very sparsly distributed(+), roots of 0.2cm in diameter were most common and roots > 0.2cm were very rare, also thickness thined. 60~70% all the roots were developed at the depth of 0~30cm, where big roots were below 0.9cm in diameter and fine roots were higly sparse(+).

  • PDF

Nutrient Turnover by Fine Roots in Temperate Hardwood and Softwood Forest Ecosystems Varying in Calcium Availability

  • Park, Byung Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.214-221
    • /
    • 2007
  • The effect of nutrient availability and forest type on the nutrient turnover of fine roots is important in terrestrial nutrient cycling, but it is poorly understood. I measured nutrient turnover of hardwoods and softwoods at three well studied sites in the northeastern US: Sleepers River, VT; Hubbard Brook, NH; Cone Pond, NH. Significant differences in nutrient turnover by fine roots were observed among sites, but not between forest types. The magnitude of differences for each element ranged from 3 times for P and N to 8 times for Ca and Mg between sites. Smaller differences of 0.2 to 0.8 times were observed between forest types. In hardwoods, the Sleepers River 'new' site had $23kg\;ha^{-1}\;yr^{-1}$ Ca, $7kg\;ha^{-1}\;yr^{-1}$ Mg, and $16kg\;ha^{-1}\;yr^{-1}$ K turnover, owing to high root nutrient contents and turnover. Cone Pond had the highest turnover for Mn ($0.8kg\;ha^{-1}\;yr^{-1}$) and Al ($16kg\;ha^{-1}\;yr^{-1}$), owing to high nutrient contents. The Hubbard Brook hardwood site exhibited the lowest turnover of these elements. In softwoods, the variation in turnover of Ca, Mg, and K was lower than in hardwoods. The Hubbard Brook had the highest turnover for P ($1.6kg\;ha^{-1}\;yr^{-1}$), N ($31kg\;ha^{-1}\;yr^{-1}$), Mn ($0.4kg\;ha^{-1}\;yr^{-1}$), Al ($10kg\;ha^{-1}\;yr^{-1}$), Fe ($6.4kg\;ha^{-1}\;yr^{-1}$), Zn ($0.3kg\;ha^{-1}\;yr^{-1}$), Cu ($34g\;ha^{-1}\;yr^{-1}$), and C ($1.1Mg\;ha^{-1}\;yr^{-1}$). Root Ca turnover exponentially increased as soil percentage Ca saturation increased because of greater root nutrient contents and more rapid turnover at the higher Ca sites. These results imply that nutrient inputs by root turnover significantly increase as soil Ca availability improves in temperate forest ecosystems.

The Effect of Environmental Fine Bubble on the Production of Ginsenoside during the Growth Period of Ginseng Cultivation (인삼 재배시 생육기간 동안 환경적 요인인 미세기포수가 ginsenoside 생성에 미치는 영향)

  • Ahn, Chul-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.1-7
    • /
    • 2017
  • This study was conducted to investigate changes in ginsenoside by continuously treating fine bubble, which are mainly used for environmental purification, in 2-year-old ginseng. The ginsenoside content and composition of ginseng leaves and roots were analyzed for 4 months (120 days) after application of Fine bubble. As a result of treatment with common water in leaves, only Re of protopanaxatriol was significantly higher and As a result of treatment with fine buble, it was confirmed that protopanaxadiol Rb1, RC, Rb2 and Rd components were also increased. Especially, the increase of Re and Rb1 resulted in an increase of total ginsenoside. The ratio of PD / PT to ginseng was 0.811 in finebubble treated leaves and 1.28 in root. The fine bubble treatment induced the synthesis of ginsenoside from the roots and resulted in a PD / PT ratio of close to 1. Therefore, this study suggests a method of cultivating high quality ginseng using fine bubble water and suggests possibility of using it as a functional food material which can be used with leaves as well as roots.

Relationship between the Aboveground Vegetation Structure and Fine Roots of the Topsoil in the Burnt Forest Areas, Korea (산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계)

  • Lee, Kyu-Song;Park, Sang-Deog
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • This study was conducted to elucidate the relationship between the aboveground vegetation structure and fine roots of the topsoil (<15m), and thereafter to obtain the regression models for the estimation of the fine roots of the topsoil using the aboveground vegetation values in the burned forest areas, Korea. The FRT (fine roots of the top soil) as well as the aboveground vegetation structure showed spatial variation in the earlier successional stages after forest fire. The fine roots (<2 mm) of the topsoil in the earlier successional stages than the first 3 year after forest fire showed the range from 3 to 166 g $DM/m^2$. The FRT in the naturally regenerated sites and planted sites after forest fire was closely correlated with the vegetation indices, especially lvc, representing the development status of the aboveground vegetation. The FRT in the terrace seeding work sites after forest fire was closely correlated with year elapsed after terrace seeding work. The FRT in the terrace seeding work sites showed the much higher values because of the vigorous growth of grass species than the other sites. In the naturally regenerated sites, the FRT showed the parabola form according to the increment of aboveground vegetation value (Ivc). Although the aboveground vegetation value (Ivc) showed a tendency to increase logarithmically during the secondary succession after forest fire, the estimated fine roots of the topsoil was depicted the parabola form showing the gradual increment until the first 15 years and slight decrease thereafter. Decrease of FRT in the later successional stage showing the high vegetation value may be caused by increment of the woody species contribution to the vegetation value (Ivc). Our results represented that the aboveground vegetation value (Ivc) can be used to the estimation of the fine roots of the topsoil in burned forest areas.

Effect of Compost Application and Pruning method on Vine Growth, Fruit Quality and Vineyard Soil (퇴비시용과 전정 방법이 수체생육, 과실 품질 및 포도원 토양에 미치는 영향)

  • Lee, Jun-Bae;Ko, Kwang-Chool
    • Horticultural Science & Technology
    • /
    • v.17 no.6
    • /
    • pp.753-754
    • /
    • 1999
  • Application of compost to vineyards reduced nitrogen absorption into vine roots, increased soil nitrogen content, soil pH, soil organic matter, and fine roots density. Long pruning reduced the growth of 'Campbell Early' of Wakeman's training system. Maintaining proper vine shape was very difficult because long pruning decreased the vine growth. In conclusion, the application of compost to 'Campbell Early', 'Kyoho', 'Sheridan' vineyard decreased vine growth, increased soil organic matter, soil pH and favored the rhizosphere condition and the growth of fine roots increased.

  • PDF

Sansam of South Korea (한국 산삼의 형태학적 연구)

  • Shin Soon Shik;Kim Gyeong Cheol;Kim Chang Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1260-1262
    • /
    • 2002
  • A particular type of ginseng that grows in mountainous regions of Korea is known as Sansam, a term meaning literally mountain grown ginseng. Sansam has recently gained a reputation among some Korean people who believe its health benefits are superior to that of other types of ginseng. Misuse of Sansam has resulted from misinformation that has circulated about the health benefits of its use. Due to insufficient study and research, Korean Oriental Medicine academia does not presently have enough credible information about Sansam to properly educate the public in its use. However, we do have a responsibility to perform adequate study and research so that correct information may be provided. To date, only cursory investigation of the physical characteristics of the Sansam plant have been conducted. This limited investigation was performed in July 2002, at Sobaek Mountain. The branches, leaves, stems, peduncles, fruits, and roots (head, main and fine roots) were observed. The fine roots grew and spread in a large area around the main roots so that harvesting the plants required digging out the soil a considerable distance from the main roots. The plants grew in a northwesterly direction, with a gradient of 40 degrees. They had four branches. Three of the branches had six leaves, while one had five leaves. Each plant had 40 fruits. The roots of the plants grew in a shape similar the Chinese character for mountain. The roots were milky in color. The average weight of the plants was 42.5 grams.

Community Structure, Phytomass, and Primary Productivity in Thuja orientalis Stands on Limestone Area

  • Kwak, Young-Se;Lee, Choong-Il
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.189-196
    • /
    • 1999
  • The community structure, phytomass, and primary productivity in Thuja orientalis stands on a limestone area located in Maepo-up, Chungbuk province in Korea were estimated quantitatively. Seven species including a small proportion of Quercus dentata were identified in the tree layer, 26 species including Ulmus macrocarpa in the shrub layer, and 79 species including Carex lnceolata in the herb layer of the Thuja stands. The vertical distribution of the fine root phytomass exhibited a power functional decrease relative to the soil depth. The seasonal changes in the fine root phytomass at a soil depth of 5 cm were closely related to the pecipitation in the study area. The productivity of the stand of stems, branches, leaves, and roots were 10.72, 0.82, 0.45 and 6.46 ton DM. $ha^{-1}$ .$yr^{-1}$, respectively. The Thuja stand had a high foliage(25%) and low rate of production per unit of foliage. The annual turnover rate of the fine roots int he Thuja stand was 6.71 $yr^{-1}$. The net primary production of the overstory including the understory was estimated at 19.48 ton DM.$ha^{-1}$.$yr^{-1}$ including an underground section of 6.46 ton DM.$ha^{-1}$.$yr^{-1}$(33%). The allocation ratio of net production to root was lower in the limestone Thuja communities than at the nearby non-limestone ones, whereas the production efficiency to leaf weight was higher in the limestone communities. These results would seem to indicate that the limited production capacity is due to the calcium toxicity and low availability of iron and phosphorus in a limestone soil with a high pH, calcium, and bicarbonate content with a strategy for survival in a hostile habitat.

  • PDF

Roots Growth Characteristics of Zelkova serrata Makino. after Replanting in the Reclaimed Land from the Sea - On the Root Structure and Spatial Distribution of Fine Root Phytomass - (임해매립지의 느티나무 식재 이후 뿌리 생장특성 -뿌리구조 및 세근의 공간적 분포를 중심으로-)

  • Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.5
    • /
    • pp.46-55
    • /
    • 2007
  • This study was carried out to analyze both the root structure and the fine root phytomass of the vertical and horizontal distribution of Zelkova serrata Makino. which was transplanted in the reclaimed land from the sea in Gwangyang, Jeonnam, South Korea. The base ground was reclaimed land from the sea. $Z_1$ of the planting ground was filled to a $100{\sim}150cm$ thickness with the improved soil instead of the reclaimed soil from the sea, $Z_2$ of the planting ground was covered to a $20{\sim}30cm$ thickness with the improved soil and $Z_3$ of the planting ground was mounded to 120cm thickness with the improved soil on the reclaimed land from the sea. In addition, $Z_4,\;Z_5\;and\;Z_6$ of the planting grounds were at the large-sized mound on the reclaimed land from the sea. $Z_4$ of the planting ground was located at the lowest level, $Z_5$ planting ground was located at the slope and $Z_6$ planting ground was located at the top of the large-sized mound. The large-sized mounds contain 3 layers, the base layer was reclaimed land from the sea and the second layer was mounded to a $200{\sim}300cm$ thickness with the desalinized soil from the sea on the base layers and the finally layers were mounded to a $80{\sim}120cm$ thickness with improved soil on the second layer. The planting grounds $Z_3,\;Z_4,\;Z_5\;and\;Z_6$ developed roots such as tap roots, lateral roots and heart roots. However, in $Z_1\;and\;Z_2$ roots development were inhibited. The fine-root phytomass of the 6 planting ground types was as follows: $113.5g\;DM/m^2$ for $Z_5$, $105.5g\;DM/m^2$ for $Z_4$, $88.3g\;DM/m^2$ for $Z_3$, $81.0g\;DM/m^2$ for $Z_6$, $73.0g\;DM/m^2$ for $Z_2$, $43.3g\;DM/m^2$ for $Z_1$. The vertical distribution of the fine root phytomass decreased from the upper to the deeper soil profiles in the 6 mound types. The fine root phytomass was $43.3{\sim}71.8%$ in a $0{\sim}20cm$ thickness of soil layer and it decreased according to the distance from the nearest trees. The root growth in the improved soil was better than in the reclaimed soil from the sea. However, root growth decreased more in the disturbed soils even though the planting grounds contained the improved soils. The retarded development of roots and the spatial distribution patterns of the fine root phytomass were closely connected to the reclaimed soil from the sea. In the disturbed soil, the soil hardness and alkalic cation($Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+}$). were high and the soil water was lacking. We suggest that the construction of planting grounds and the improvement of bad soil are necessary for the proper and effective growth of landscaping plants.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Distribution and Composition of Dietary Fiber in Various Parts of Ginseng Root (인삼의 부위별 식이섬유소 분포 및 조성)

  • 김은희;최강주
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.289-293
    • /
    • 1998
  • Six-year-old ginseng roots were divided into rhizome, main root (epidermis, cortex and xylem) and lateral root (big tail root, mid tail root and fine tail root) and the concentration levels of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) in each part of the ginseng were investigated. The amount ratios of SDF to IDF (SDF/IDF) in various parts of the ginseng root were also compared. The concentration levels of SDF and IDF in the ginseng root were 6.56% and 15.41 %, respectively, where the level of SDF in main root was a little higher than that of lateral root. However the amount of IDF in main root was lower than that of lateral root. The SDF/IDF was highest in main root, 0.513, which was higher than that of lateral root or rhizome. The SDF/IDF was 0.704 in xylem, 0.478 in cortex, and 0.099 in epidermis of the main root and the SDF/IDF was 0.576 in big tail root, 0.463 in mid tail root, and 0.255 in fine tail root of the lateral root. It has been reported that SDF might have preventive effects on diabetes, obesity, high blood pressure, colon and rectum cancers, while IDF might have preventive effects on constipation. Therefore, main root of six-year- old ginseng root is thought to have a little different physiological activity from lateral or fine tail roots.

  • PDF