• 제목/요약/키워드: fine powders

검색결과 493건 처리시간 0.028초

화장품용 미분체 혼합공정에서의 분산특성 연구 (A Study of Mixing Characteristics for Cosmetic Pine Powder)

  • 이종옥;송건응
    • 대한화장품학회지
    • /
    • 제19권1호
    • /
    • pp.85-107
    • /
    • 1993
  • 화장품에 사용되는 미분체의 혼합특성을 알기 위하여 화장품용 미분체 혼합기인 ribbon mixer, powder mixer micropulverizer, fine impact mill에 미립자, 구상 및 판상의 형태를 가진 bulk powders를 혼합시간을 변화 시키면서 혼합하는 실험을 하였다. 혼합분체의 혼합정도를 평가하기 위하여 산화철을 tracer로 사용하였으며, 원료 및 혼합물의 particle size distribution, specific surface area, density 및 표면색상을 측정하였다. 미분체 혼합물의 혼합시간과 표면색상변화, 입도분포 및 비표면적과의 사이에 대수적 1차 상관관계가 성립되었고, 색상의 변화로부터 혼합정도를 평가할 수 있는 간단한 식을 도출하였다. 사용된 혼합기에 대해 혼합기구별 modelling과 혼합에 따른 입도 분포 및 비표면적의 변화로부터 혼합기 impellar tip에서의 linear velocity별 혼합기는 대류혼합, 전단혼합 및 확산혼합으로 분류되었다.

  • PDF

급속응고한 Al-Mg 합금의 미세조직 및 인장특성에 미치는 첨가원소의 영향 (Effects of Alloying Elements on the Microstructure and Tensile Properties of Rapidly Solidified Al-Mg Alloys)

  • 박현호;박종성;김명호
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.356-364
    • /
    • 1997
  • In order to study effects of Cu and Be on the microstructure and tensile properties of rapidly solidified Al-Mg alloys, Al-Mg-Cu-Be alloys have been rapidly solidified by inert gas atomization process. Microstructure of rapidly solidified Al-Mg-Cu-Be powders exhibited refinement and good dispersion of Be particles as increasing of solidification rate. Solidification rate of atomized powders was estimated to be about $5{\times}10^{3{\circ}}C/s$. Inert gas atomized Al-Mg-Cu-Be powders were hot-processed by vacuum hot pressing at $450^{\circ}C$ under 100 MPa and hot extruded with reduction ratio in area of 25: 1 at $450^{\circ}C$. The extruded Al-Mg-Cu-Be powders consisted of recrystallized fine Al grains and homogeneously dispersed fine Be particles, and exhibited improved tensile properties with increase in Cu content. $Al_2CuMg$ compounds precipitated in grain and grain boundaries of Al-Mg-Cu-Be alloys with aging heat treatment after solution treatment. Hardness and tensile properties were improved by increasing Cu content and Be addition. Compared with extruded Al-Mg-Cu powders, the extruded Al-Mg-Cu-Be powders exhibited finer recrystallized grains and improved tensile properties by dispersion hardening of Be and subgrain boundaries pinned by fine Be particles. After aging treatment, hardness and tensile properties were improved due to restricted precipitation by increasing of dislocation density around Be particles in matrix.

  • PDF

New Products for High Reliable Connections in Packaging Technology

  • Mueller, Tobias
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2006년도 ISMP 2006
    • /
    • pp.179-212
    • /
    • 2006
  • 1. $Welco^{(R)}$ Ultra fine solder powders are suitable for wafer bumping applications; mass production of ultra fine powders with high quality and high yield. - UFP based pastes for wafer bumping by stencil printing ($60-80{\mu}m$ pitch) are now available - Residue free solder flux was developed; meets voids specification of 20%. - F645 type 5 paste is suitable for components 01005

  • PDF

불산부생 II 형 무수석고와 포졸란 미분체가 혼입된 고강도콘크리트의 특성에 관한 연구 (A Study on Properties of the High-Strength Concrete Admixed with II-Anhydrite and Pozzolanic Fine Power)

  • 조민형;길배수;전진환;김도수;남재현;노재성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.136-145
    • /
    • 1997
  • The purpose of this study is to develope of alternative adimixture for manufacture of PHC pile(compressive strength above 800kg/$\textrm{cm}^2$). For the investigation, properties of alternative admixture admixed with II-anhydrite and pozollanic fine powders(e.q., Fly-ash, Silica-Fume), the fluidity and viscosity in the cement pastes, the fluidity and compressive strength in mortars at steam curing condition, were respectively examined. Also, properties of compressive strength of concretes with exiting admixture(specimen name SM) and alterantive admixture(specimen name AP) for PHC pile, at steam and standard curing condition, were compared each other. As a result of this experimental study, it was found that specimens admixed with II-anhydrite and pozollanic fine powders had an increase on the fluidity of cement paste and mortar, and compressive strength of mortar and concrete was as good as concrete with SM.

  • PDF

초미분체 NiO/YSZ 고체산화물 복합재료의 제조특성 (Manufacture Properties of the Ultrafine NiO/YSZ Solid Oxide Composite)

  • 최창주;김창석;오무송;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1080-1083
    • /
    • 2001
  • Ultrafine NiO/YSZ composite powders were prepared by using a glycine nitrate process for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with N$_2$absorption, scanning and transmission electron microscopy. The strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$\^$+/. After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal micro-structure very fine Ni parties of 3-5${\mu}$m were distributed uniformly and fine pores around Ni metal particles were formed, thes, leading to an increase of the triple phase boundary among gas Ni and YSZ.

  • PDF

In-Process합성에 의한 고기능 금속간화합물의 복합성형 (Complex Forming of the High-Functional Intermetallic Compound by the In Process Synthesis)

  • 한정현;박성갑;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.408-414
    • /
    • 2006
  • [ $MoSi_2$ ] alloys with Al, B or Nb were prepared by an advanced consolidation process that combined mechanical alloying with pulse discharge sintering (complex forming) to improve the mechanical properties. Their microstructure and mechanical properties were investigated. The $MoSi_2$ alloys fabricated by complex forming method showed very fine microstructure when compared with the sample sintered from commercial $MoSi_2$ powders. Alloys made from powders milled in Ar gas had fewer silica or alumina phases as compared to their counterparts sintered from powders milled in air. In densification of the sintered body, addition of B was more effective than Al or Nb. Both Victors hardness and tensile test indicated that the alloy fabricated by the complex forming method showed better properties than the sample sintered from commercial $MoSi_2$ powders. The Al added alloy sintered from the powders milled in air had the superior mechanical properties due to the suppression of $SiO_2$ and formation of fine $Al_2O_3$ particles.

고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구 (Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells)

  • 최창주;김태성;황종선;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향 (Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates)

  • 공헌;권기범;박상진;노효섭;이상진
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

Structural and Magnetic Properties of (CoFe2O4)0.5(Y3Fe5O12)0.5 Powder

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae;Lee, Sung-Ho
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.80-83
    • /
    • 2005
  • Cobalt ferrite and garnet powders were grown using a conventional ceramic method in two different ways for understanding the magnetic interaction between structurally different materials. Structures of these powders were investigated by using an X-ray diffractometer (XRD) and the magnetic interaction between iron ions and the magnetic properties of the powders were measured by a $M\ddot{o}ssbauer$ spectroscopy and a vibrating sample magnetometer (VSM), respectively. The result of the XRD measurement showed that the annealing temperature higher than $1200^{\circ}C$ was necessary to grow a $(CoFe_2O_4)_{0.5}(Y_3Fe_5O_{12})_{0.5}$ powder. $M\ddot{o}ssbauer$ spectra for the powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the magnetic interaction between the grain surface of cobalt ferrite and the one of the garnet. In case of annealing the powders at the temperature large enough to crystallize them, raw chemicals became fine cobalt ferrite and garnet particles at first and then these fine particles were aggregated and formed large grains of ferrite powders. The result of the VSM measurement showed that the powders prepared at $1200^{\circ}C$ had the similar saturation magnetization and the coercivity regardless of the preparation method.

초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 제조 (Preparation of $BaTiO_3$ Fine Powders by Spray Pyrolysis Using Ultrasonic Atomization Technique)

  • 조형진;이종흔;박순자
    • 한국세라믹학회지
    • /
    • 제28권11호
    • /
    • pp.851-858
    • /
    • 1991
  • Spherical fine BaTiO3 powders with an average diameter of 0.3${\mu}{\textrm}{m}$ to 0.9${\mu}{\textrm}{m}$ are prepared at 100$0^{\circ}C$ by the ultrasonic spray pyrolysis of solutions containing Ba(NO3)2 and TiCl4. Experimental variables are adjusted to produce BaTiO3 powders and its effect on the phase, the size and the morphology of the particles are investigated by XRD, SEM, TEM. Each particle consists of small primary particles and has a hollow around its center. The dependence of particle diameters on the concentrations of source solutions indicates that metal salt precursors are dried to precipitate solid particles and decompose to form BaTiO3 phase without gas phase reactions.

  • PDF