• 제목/요약/키워드: fine powders

검색결과 493건 처리시간 0.03초

A pilot study of a new fingerprint powder application method for the reduction of health risk

  • Kim, Eun-Ji;Lee, Da-Eun;Park, Suk-Won;Seo, Kyung-Suk;Choi, Sung-Woon
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.196-209
    • /
    • 2019
  • As a traditional method to apply fingerprint powder, brush method ("dusting") can create a risk to the health of crime scene investigators due to the inhalation toxicity of harmful and fine powders. Therefore, as a new method of applying powders, we tried to evaluate the potential of a chamber method for the development of latent fingerprint using fans in a closed chamber with a fixed capacity that can prevent the powders from being blown outside and exposed to the users, by comparing with the development results of the conventional brush method. Fingerprints on glass and plastic (PET) were extracted with black powder and green fluorescent powder, and the sharpness and minutiae of the developed fingerprints were compared for each method. The results of the black powder showed similar results, but the effect of the chamber method was slightly decreased when the green fluorescent powder was used. In order to improve the development with the green fluorescent powder, the mixture (50 : 50) of the fluorescent powder with the silica gel was tested and the results were similar to those of the brush method. It is expected that the chamber method has a high potential as a new powder application method considering the health of the crime scene investigator after fine tuning of development conditions with additional studies.

적층형 셀과 아연도금층을 이용한 고온고압 합성다이아몬드의 압력변화에 따른 물성 연구 (Property of the HPHT Diamonds Using Stack Cell and Zn Coating with Pressure)

  • 신운;송오성
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.167-172
    • /
    • 2012
  • Fine diamond powders are synthesized with a 420 ${\phi}$ cubic press and stack-cell composed of Kovar ($Fe_{54}Ni_{29}Co_{17}$) (or Kovar+7 ${\mu}m$-thick Zn electroplated) alloy and graphite disks. The high pressure high temperature (HPHT) process condition was executed at $1500^{\circ}C$ for 280 seconds by varying the nominal pressure of 5.7~10.6 GPa. The density of formation, size, shape, and phase of diamonds are determined by optical microscopy, field emission scanning electron microscopy, thermal gravimetric analysis-differential thermal ammnlysis (TGA-DTA), X-ray diffraction (XRD), and micro-Raman spectroscopy. Through the microscopy analyses, we found that 1.5 ${\mu}m$ super-fine tetrahedral diamonds were synthesized for Zn coated Kovar cell with whole range of pressure while ~3 ${\mu}m$ super-fine diamond for conventional Kovar cell with < 10.6 GPa. Based on $750^{\circ}C$ exothermic reaction of diamonds in TGA-DTA, and characteristic peaks of the diamonds in XRD and micro-Raman analysis, we could confirm that the diamonds were successfully formed with the whole pressure range in this research. Finally, we propose a new process for super-fine diamonds by lowering the pressure condition and employing Zn electroplated Kovar disks.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

액상-환원법으로 초미세 Cu 분말 제조 시 반응 조건의 영향 (The Influence of Reaction Conditions on the Preparation of Ultra Fine Cu Powders with Wet-reduction Process)

  • 박영민;진형호;김상렬;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.790-794
    • /
    • 2004
  • Ultra-fine Copper particles for a conductive paste in electric-electronic field were prepared using wet-reduction process with hydrazine hydrate ($N_{2}H_4{\cdot}H_{2}O$) as a reductor. The effect of reaction conditions such as the amount of dispersion ($Na_{4}O_{7}P_2{\cdot}10H_{2}O$) and reductor ($N_{2}H_4{\cdot}H_{2}O$) on the particle size and shape for the prepared Cu powders was investigated. The quantity of dispersion and reductor varied from 0 to 0.0025 M and from 5 to 40 ml at a reaction temperature of $70^{\circ}C$, respectively. The particle size, shape, and structure for the obtained Cu particles were characterized by means of XRD, SEM, TEM, EDS and TGA. The aggregation of Cu particles was reduced with relatively increasing of the amount of dispersion at fixed other reaction conditions. The smaller Cu particle with size of approximately 300nm was obtained from 0.032 M $CuSO_4$ with adding of 0.0025 M $Na_{4}O7P_2{\cdot}10H_{2}O$ and 40ml $N_{2}H_4{\cdot}H_{2}O$ at a reaction temperature of $70^{\circ}C$.

고에너지 볼 밀링을 이용한 (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 무연 압전 세라믹스의 특성 (Effects of High Energy Ball Milling on the Piezoelectric Properties of Lead-free (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 Ceramics)

  • 김영혁;허대영;태원필;이재신
    • 한국세라믹학회지
    • /
    • 제45권6호
    • /
    • pp.363-367
    • /
    • 2008
  • Lead-free $(K_{0.44}Na_{0.52})(Nb_{0.86}Ta_{0.10})-0.04LiSbO_3$ piezoelectric ceramics have been synthesized by conventional sintering process and then investigated on the sintering and piezoelectric properties by high energy ball milling (HEBM) treatment. The powders milled for different time are characterized by XRD, FE-SEM. The powders are pressed into a pellet and sintered. It is found that the piezoelectric properties of sintered specimens are strongly dependent on the milling time. The piezoelectric properties are enhanced by high energy ball milling treatment. The planer electromechanical coupling factor ($k_p$) and piezoelectric constant ($d_{33}$) of a specimen sintered at $1050^{\circ}C$ are 0.44 and 267 pC/N, respectively.

수열합성법에 의한 BaTiO3분말합성 및 소결체의 제조 (Preparation and Characterization of Hydrothermal BaTiO3 Powders and Ceramics)

  • 이병우;최경식;신동우
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.577-582
    • /
    • 2003
  • 공침전물을 원료로 사용한 수열합성법을 통해 저온에서 미립의 BaTiO$_3$ 분말을 합성하였다. 출발물질로는 BaCl$_2$와 TiCl$_4$ 의 수용액을 사용하였다 이들의 혼합용액을 제조한 다음 과산화물 형태의 침전을 얻기 위해 과산화수소수($H_2O$$_2$)를 첨가하였으며 이렇게 준비된 용액을 암모니아수에 적하하여 공침전물을 얻었다. 이 과산화공침전물을 수열합성의 원료로 사용하였으며 반응온도와 시간 및 pH를 달리하면서 합성하였다. pH 13 이상이 요구되어 강염기인 KOH나 NaOH를 사용하는 일반적인 수열합성법과 달리 암모나아수로도 얻을 수 있는 pH 12 이하에서 perovskite BaTiO$_3$가 합성되었으며, 11$0^{\circ}C$ 이상에서 균일하고 미세한 BaTiO$_3$ 분말을 합성할 수 있었다. 13$0^{\circ}C$ 이상에서 얻은 분말의 경우 합성시간과 관계없이 일정한 물성을 보여주었다. 이렇게 합성된 분말은 76 $m^2$/g의 높은 비표면적을 보였으며 20 nm 이하의 미세한 일차입자들이 약하게 결합된 응집체를 이루고 있었다. 수열합성분말을 이용하여 l150~120$0^{\circ}C$의 온도범위에서 소결한 시편의 소결특성 및 유전 물성을 평가하였다.

PVA를 이용한 Solution-Polymerization 합성법에 의한 Mullite-Cordierite 복합분말의 합성 (A Synthesis of Mullite-Cordierite Composite Powders by Solution-Polymerization Route Based on Polyvinyl Alcohol)

  • 이용석;이병하
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.663-669
    • /
    • 2004
  • Mullite와 cordierite는 우수한 열적, 화학적 특성을 나타내는 안정된 산화물로서 다양한 구조재료 및 전자재료에 사용되어지고 있으나, mullite의 경우 내열충격성이, cordierite의 경우 고온강도가 떨어지는 단점이 있다. 이와 같은 단점을 서로 보완하기 위한 mullite-cordierite 복합체에 대한 연구가 진행되고 있다 본 연구에서는 fused silica, aluminium nitrate, magnesium nitrate와 PVA의 혼합을 이용한 solution-polymerization 합성법에 의해, mullite-cordierite복합분말을 합성하고 생성상 및 결정성, 밀도 및 비표면적 등의 특성을 분석하였다 그 결과, 본 실험의 모든 조성에서 있어서 130$0^{\circ}C$로 열처리하였을 경우, mullite와 cordierite의 상이 공존하는 복합분말이 생성되는 것을 확인할 수 있었다. 이 mullite-cordierite복합 분말을 planetary milli로 1시간 분쇄하였을 때 비표면적은 약 20 $m^2$/g로서 미립의 분말이 확인되어졌고, 분쇄시간의 증가에 따라 4시간에서는 23$m^2$/g, 8시간에서는 24$m^2$/g로 비표면적이 증가하였다.

기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성 (Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys)

  • 표성규
    • 한국분말재료학회지
    • /
    • 제5권2호
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동 (Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM))

  • 송준우;김효섭;김홍물;김택수;홍순직
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동 (Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion)

  • 윤은유;채홍준;김택수;이종수;김형섭
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.