• Title/Summary/Keyword: fine particle size

Search Result 937, Processing Time 0.027 seconds

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

Effects of Operating Conditions of an Air-Classifier Mill on the Particle Size of Fine Powder (공기분급식 미분쇄기의 운전조건이 미세분말의 크기에 미치는 영향)

  • Shin, Eung-Soo;Kim, Kee-Sung;Kim, Young-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.426-433
    • /
    • 2016
  • This paper investigates the effects of operating conditions of an air classifier mill (ACM) on the particle sizes of PVC and rice hull. Based on the Box-Behnken matrix, the pulverization experiments were performed considering three operating factors: the air flow rate, the classifier speed and the mill speed. The response surface methodology was applied to identify the effects of the operating factors on the particle size. Results show that the particle sizes are governed by the linear variations of the operating factors. As less air is supplied and the mill rotates more slowly, the powder of both PVC and rice hull becomes finer. Furthermore, the classifier speed has a significant effect on the PVC powder but almost no effect on the rice hull powder. Thus, it is found that strong interactions exist between the material characteristics of a particle and the operating conditions of the ACM.

Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils (오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가)

  • Kwon, Ye-Seul;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

Ultra-fine Grinding Mechanism of Pharmaceutical Additive by Stirred Ball Mill - Consideration of particle size distribution on ground nano-particle

  • Park, Woo-Sik;Choi, Hee-Kyu
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.234.2-234.2
    • /
    • 2003
  • Recently, the need for ultra-fine particles, especially nano-sized particles has increased in the fields preparing raw powders such as pharmaceutical additive and high value added products in the Nano-Technology processes. Therefore, the research in ultra-fine grinding is very important, especially, in nanometer grinding. In the previous paper, a series of wet grinding experiments using grinding aids using a stirred ball mill have been performed on grinding rate constant based on grinding kinetics. (omitted)

  • PDF

Development of Fine Bamboo Leaf Powder and Its Color Stability (미세 댓잎분말의 개발 및 색의 안정화)

  • Kim, Ji Myoung;No, Junhee;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.405-412
    • /
    • 2015
  • To develop a color stable and fine bamboo leaf powder (BLP) as a functional green biomaterial, bamboo leaf (BL) purchased from Sasa borealis and cultivated in Damyang, Jeonnam was treated with different conditions and BLP was evaluated. The four treatments comprised of boiling in water, in zinc chloride, sodium bicarbonate, and vinegar solutions, BLP4 was treated with 2% $ZnCl_2$ for 1 h, BLP5 was treated with 1% $ZnCl_2$ for 2 h, and BLP6 was treated with 1% $ZnCl_2+10%$ NaCl for 1 h. The particle size distribution, ash content, water binding capacity, and color change after heating in acidic solution were compared to commercial fine green tea (GTP) and bamboo leaf powders (CBLP). The particle size (cumulative 90%) of BLP was finest in BLP4 followed by BLP6 < BLP5 < GTP < CBLP. The water binding capacity of GTP was the highest and that of BLP was negatively correlated with particle size. After heating in acidic solution, the color of commercial GTP and CBLP changed from bright green to olive green, but the treated BLPs remained bright green. Especially, the -a (greenness) values for the commercial powders decreased from 11.2-13.6 to 3.1-3.8, while those of the treated BLPs did not change.

Synthesis of the Ultrafine $BaTiO_3$ power by hydrothermal Process

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Heul
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.87-89
    • /
    • 1997
  • The BaTiO$_3$ fine powder was prepared by hydrthermal method using titanium tetrahydoxide (Ti(OH)$_4$) and barium dihydroxide (Ba(OH)$_2$.8$H_2O$) as raw materials. The fine powder was obtained at temperatures as low as 160 to 185$^{\circ}C$. The properties of the BaTiO$_3$ powder were studied as a function of various parameters (reaction temperature, reaction time, Ba/Ti=ratio, etc). The average particle size of the BaTiO$_3$ increased with increasing reaction temperature. After hydrothermal treatment at 17$0^{\circ}C$ for 8 h, the average particle size of the BaTiO$_3$ powder was about 30 nm and the particle size distribution was narrow.

  • PDF

Development of a Pretreatment Process for Coal Gasification Slag to Convert High-quality Aggregates. (고품질 골재 전환을 위한 석탄 가스화 용융슬래그의 전처리 공정 개발)

  • Hu, Yun-Yao;Han, Soo-Hwan;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.122-123
    • /
    • 2021
  • This study examines the performance of pretreatment process system as the initial construction stage of the pretreatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate of construction materials. The process undergoes a grinding process capable of grinding to a predetermined particle size during primary grinding and a sorting plant through sieve grading of 2.5 mm or less for particle size correction. Afterwards, it is hoped that the use of coal gasification slag of Korean IGCC as a fine aggregate for concrete will be distributed and expanded by producing quality-improved CGS fine aggregate using water as a medium for removing impurities and particulates.

  • PDF

A study on analysis of particle size distribution

  • Min, Shin-Hong
    • Archives of Pharmacal Research
    • /
    • v.3 no.2
    • /
    • pp.65-74
    • /
    • 1980
  • Analysis of particle size distribution of a sample of fine aluminum hydroxide powder was carried out by four different methods, i. e., conductivity, air permeability, gas-adsorption and sedimentation. Each method was reproducible. The results obtained by Coulter counter and sedimentation balance were similar, and the data obtained by Lea and Nurse permeameter and Stroehlein areameter were also similar. But the results differ considerabley between the former and the latter. The advantages and disavantages of each method were discussed briefly and a means of comparing the results with those obtianed by surface area measurements was shown.

  • PDF