• Title/Summary/Keyword: fin diameter

Search Result 202, Processing Time 0.018 seconds

Analysis of a Cylindrical Pin Fin with Variable Diameter (직경이 변하는 원통형 Pin 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.71-75
    • /
    • 2007
  • A cylindrical pin fin with variable diameter is analyzed by using the one dimensional analytical method. Heat loss and fin efficiency are presented as a function of the fin diameter, length and convection characteristic numbers ratio. The relationship between the fin diameter and convection characteristic number over the fin for the same amount of heat loss is shown. One of the results indicates the fin efficiency increases as the fin diameter increases while that decreases as the fin length increases.

  • PDF

Heat transfer and friction loss characteristics of shaped short pin-fin arrays (짧은 못형핀의 형상 변화에 따른 열전달 및 마찰손실 특성)

  • Cho, H.H.;Goldstein, R.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.259-267
    • /
    • 1997
  • Average heat transfer coefficients and friction coefficients have been measured from staggered short pin-fin arrays to investigate the effect of fin shapes. Flow entering into the test section is a fully developed duct flow and the Reynolds number ranges from 5,000 to 25,000 based on fin diameter and average approaching velocity. The fin has three different shapes; uniform-diameter circular fin, two stepped-diameter circular fins. Average heat transfer rates change slightly with the fin shapes. However, friction loss(pressure loss) for the stepped-diameter fins is significantly less than that for the uniform-diameter fin. This results indicate that the stepped-diameter fin arrays in duct flow enhance heat transfer rates largely based on unit pumping power.

  • PDF

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER (타원형휜-원형관 열교환기의 강제대류 열전달 특성)

  • Kang, H.C.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER (타원형휜-원형관 열교환기의 강제대류 열전달 특성)

  • Kang, H.C.;Lee, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.341-346
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and the different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

  • PDF

The Effect of Serrated Fins on the Flow Around a Circular Cylinder

  • Boo, Jung-Sook;Ryu, Byong-Nam;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.925-934
    • /
    • 2003
  • An experimental study is performed to investigate the characteristics of near wake flow behind a circular cylinder with serrated fins using a constant temperature anemometer and flow visualization. Various vortex shedding modes are observed. Fin height and pitch are closely related to the vortex shedding frequency after a certain transient Reynolds number. The through velocity across the fins decreases with increasing fin height and decreasing fin pitch. Vortex shedding is affected strongly by the velocity distribution just on top of the finned tube. The weaker gradient of velocity distribution is shown as increasing the freestream velocity and the fin height, while decreasing the fin pitch. The weaker velocity gradient delays the entrainment flow and weakens its strength. As a result of this phenomenon, vortex shedding is decreased. The effective diameter is defined as a virtual circular cylinder diameter taking into account the volume of fins, while the hydraulic diameter is proposed to cover the effect of friction by the fin surfaces. The Strouhal number based upon the effective diameters seems to correlate well with that of a circular cylinder without fins. After a certain transient Reynolds number, the trend of the Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter. The normalized velocity and turbulent intensity distributions with the hydraulic diameter exhibit the best correlation with the circular cylinder's data.

Forced Convection Heat Transfer for Two Circular Tube Arrays with Annular Fins (환형휜이 부착된 두 개의 원형관 배열에 대한 강제대류 열전달)

  • Kim, Seung-iI;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1093-1101
    • /
    • 2020
  • This study was carried out numerically to investigate the air flow and thermal performance around single and parallel fin-tube heat exchangers and the cooling performance of the fluid inside the heat exchangers. In this study, the air velocity(1~7m/s), the pitch of fin(4, 6.1, 8, 11.3, 18.3, 44mm) and the diameter of fin(31, 33, 35, 37, 39mm) were varied. The flow rate of the water at the fin-tube heat exchanger inlet is 89cc/min and the water temperature is 353K. The air temperature at the upstream region of the heat exchanger is 300K. flow rate of the water at the fin-tube heat exchanger inlet is 80cc/min and the water temperature is 353K. It was found that the air pressure drop around single and parallel fin-tube heat exchangers was highly dependent on the air velocity and the fin pitch, but was independent of the fin diameter. Also, it was shown that pressure drop increased more the parallel arrangements than in single heat exchanger. The temperature difference of water at the inlet and outlet of the heat exchanger depended on the air velocity, the fin pitch and the fin diameter, and it was found that the parallel arrangement method further reduced the temperature of water. It was shown that the Nusselt number increased as the Reynolds number and the fin pitch increased, and decreased as the fin diameter increased.

A Study on the Entropy Generation of Single Fin-Tube Heat Exchanger (단일 핀-관 열교환기에서 엔트로피 생성에 관한 연구)

  • Pak, Hi-Yong;Lee, Kwan-Soo;Kim, Byoung-Kue
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 1990
  • The entropy generation rate in a fin-tube heat exchanger is investigated as a basis for thermodynamic optimization associated with single fin-tube heat exchanger. The entropy generation (irreversibility)analysis is used to find the optimum design factor and investigate total entropy generation, optimum dimensions of fin length, tube inner and outer diameters, and fin spacing on the variation of design factors. The results of this study are as follows: As the outer diameter increases, optimum !in spacing and fin length increase but the entropy generation and optimum inner diameter decrease; As fin thickness increases, the entropy generation of system and optimum fin spacing increase; As fin length increases, entropy generation and optimum outer diameter increase.

  • PDF

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (II) - Comparison of Time Mean Flow Fields- - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (II) - 시간평균 유동장 비교 -)

  • Ryu, Byeong-Nam;Kim, Gyeong-Cheon;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1191-1200
    • /
    • 2002
  • The measurements of velocity vectors are made in the near wake(X/d=5.0) of a circular cylinder with serrated fins. Velocity of fluid which flow through fins decreases as increasing fin height and freestream velocity and decreasing fin pitch. Therefore the velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. The discontinuity of the streamwise velocity gradient is observed near the fin edge and causes significant changes in V-component velocity distribution in the near wake. This change attributes to the differences in Strouhal number and entraintment flow behavior. Increased turbulent intensity around a circular cylinder due to the serrated fins and entrainment flow are important factors for the recovery of velocity defect. The widths of velocity and turbulent intensity distribution of fin tubes are wider than those of a circular cylinder. The normalized velocity and turbulent intensity distributions with a hydraulic diameter which is proposed in this paper are in closer agreement with those of a circular cylinder.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins (Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구)

  • Boo Jung-Sook;Kim Kyung-Chun;Ryu Byong-Nam
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF