• Title/Summary/Keyword: filtered-X-LMS

Search Result 139, Processing Time 0.028 seconds

Secondary Path Estimation Algorithm Based on Residual Music Canceller for Noise Cancelling Headphone (노이즈 캔슬링 헤드폰에 적합한 잔여 음악 제거기 기반의 2차 경로 추정 알고리즘)

  • Ji, Youna;Lee, Keunsang;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • An active noise control (ANC) algorithm for noise canceling headphone is proposed. In this study, the feedback ANC operated with the filtered-x least mean square algorithm (FxLMS) algorithm is used to attenuate the undesired noise. Also an adaptive residual music canceller (RMC) is proposed for enhancing the accuracy of the reference signal of the feedback ANC. Simulation results show that a high quality of music sound can be consistently achieved in a time-varying secondary path situation.

Noise Attenuation Effect According to the Direction of Secondary Sound Source in Duct ANC System (Duct ANC System에서 부가음원 방향별 소음감소효과)

  • Lee, Eung-Suk;Lee, Hyung-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 2009
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of canceling speaker in ANC system. Automobile exhaust noise was recorded at 800 rpm, 3500 rpm and 5000 rpm of a diesel engine. Directions of canceling speaker can be set to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for the experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co. used to control the ANC system. The algorithm of this ANC system applied the Filtered-x-LMS algorithm that is modified to compensate for a property of DSP input signal and the secondary-path effect. As an experiment result, the direction of canceling speaker was proved to influence the reduction effect of noise. The $150^{\circ}$ duct in the attenuation effect of noise showed a better result than the $90^{\circ}$ or $30^{\circ}$ duct.

Performance Improvement of ANC System for Wireless Headset (무선헤드셋을 위한 능동 잡음 제거기의 성능 개선)

  • Park, Sung-Jin;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.343-348
    • /
    • 2011
  • This paper introduces a design for real time wireless headset using ANC (active noise control) system based on NFxLMS adaptive filter algorithm. The training time of the proposed system is significantly reduced by using the RMS delay spread of a channel as an error correction parameter, and convergence rate of the FxLMS filter has been improved with updating the coefficients of the NFxLMS filter, which we have got during the training process. Our system has shorter training time and better convergence rate at the same noise reduction level than the conventional system under real noisy environment.

Active Noise Control of 3D Enclosure System using FXLMS Algorithm (FXLMS 알고리즘을 이용한 3 차원 인클로저 시스템의 능동소음제어)

  • Oh, Jae-Eung;Yang, In-Hyung;Yoon, Ji-Hyun;Jung, Jae-Eun;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.240-241
    • /
    • 2009
  • The method of the reduction of the duct noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the Least-Mean-Square (LMS) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system.

  • PDF

Active Noise Control Algorithm having Fast Convergence (빠른 수렴성을 갖는 능동 소음제어 알고리즘에 관한 연구)

  • 나희승;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.670-677
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithm. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popular algorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer stimulations and experiments.

  • PDF

Active Noise Control of Ducts Using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 덕트의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.489-496
    • /
    • 2008
  • This paper investigates active noise control of ducts using Filtered-x Least Mean Square (FXLMS) algorithms to reduce noise transmission. Single channel FXLMS (MFXLSM) and multiple channel FXLMS (MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level (SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level. can be reduced by the active noise control using MFXLMS.

  • PDF

Active Noise Control of Ducts Using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 덕트의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • This paper investigates active noise control of ducts using filtered-x least mean square(FXLMS) algorithms to reduce noise transmission. Single channel FXLMS(SFXLSM) and multiple channel FXLMS(MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level(SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then be obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level, can be reduced by the active noise control using MFXLMS.

Nonlinear Compensation of A Secondary Path in Active Noise Control Using A Modified Filtered-X LMS Algorithm (수정된 FXLMS 알고리듬을 이용한 능동소음제어 시스템 2차 경로 비선형 특성 적응보상 기법)

  • Jeong, I.S.;Ahn, K.Y.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.22-25
    • /
    • 2004
  • In active noise control (ANC) system, the convergence behavior of the Filtered- X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortion in the secondary path as in the power amplifiers (e.g., saturation), loudspeakers and transducers. This distortion may yields degrading the error reduction performance of the ANC systems. In this paper, the authors of this paper propose a more improved and stable FXLMS algorithm to compensate for the undesirable nonlinearity of the secondary-path, whereby the third-order Volterra model was employed for the identification of the nonlinear secondary-path. In particular, the proposed approach was based on the modification of the conventional FXLMS algorithm. Finally, the simulation results showed that the proposed approach yields better convergence property and more stable performance in the ANC systems.

  • PDF

The Performance Improvement for an Active Noise Contort of Automotive Intake System under Rapidly Accelerated Condition (급가속시 자동차 흡기계의 능동소음제어 성능향상)

  • 이충휘;오재응;이유엽;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-189
    • /
    • 2003
  • The study of the automotive noise reduction has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. Recently, the active control method is used to reduce the noise of an automotive exhaust and intake system. It is mostly used the LMS(Least-Mean-Square) algorithm as an algorithm of active control because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an Active Noise Control system. However, the convergence performance of LMS algorithm went bad when the FXLMS algorithm was applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve this problem, the modified FXLMS algorithm is proposed. In this study, the improvement of the control performance using the modified FXLMS algorithm under rapidly and suddenly accelerated driving conditions was identified. Also, the performance of an active control using the LMS algorithm under rapidly accelerated driving conditions was evaluated through the theoretical derivation using a chirp signal to have similar characteristics with the induction noise signal.

Transform domain algorithm for Improving Convergence Speed of Broadband Active Noise Control (광대역 능동소음제어의 수렴속도개선을 위한 변환영역 알고리듬)

  • Ahn, Doo-Soo;Kim, Jong-Boo;Lee, Tae-Pyo;Yim, Kook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.644-646
    • /
    • 1998
  • The main drawback of filtered-X LMS(FXLMS) algorithm for the ANC of broadband noises is its low convergence speed when the filtered reference signals are strongly correlated, producing a large eigenvalue spread in correlation matrix. This correlation can be caused either by autocorrelation of the signals of the reference sensors, or by coupling between the error path which introduces intercorrelation in the filtered reference signals. In this paper, we introduce a transform domain FXLMS(TD-FXLMS) algorithm that has a high convergence speed by orthogonal transform's decorrelation properties.

  • PDF