• Title/Summary/Keyword: filter layer

Search Result 502, Processing Time 0.029 seconds

Improvement of Pad Lifetime using POU (Point of Use) Slurry Filter and High Spray Method of De-Ionized Water (POU 슬러리 필터와 탈이온수의 고분사법에 의한 패드수명의 개선)

  • 박성우;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.707-713
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was requirdfo the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gest thinner, micro-scratches are becoming as major defects. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}{\textrm}{m}$ point of use (POU) filter, which is depth-type filter and has 80% filtering efficiency for the 1.0${\mu}{\textrm}{m}$ size particle. In this paper, we studied the relationship between defect generation and polished wafer counts to understand the exact efficiency fo the slurry filteration, and to find out the appropriate pad usage. Our experimental results showed that it sis impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the slurry flow rate, and to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of depth type filter.

  • PDF

A Study on Optimization of Mask Filter and Reduction in Respiratory Resistance (마스크 필터의 효율 최적화 및 호흡 저항 감소에 관한 연구)

  • Kwon, Sehyun;Hong, Jayoung;Jeong, Sang Bin;Heo, Ki Joon;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2016
  • We conducted experiments on mask filters. We measured filtering efficiencies of several new mask filters which were manufactured by disassembling and reassembling of one type of mask filter. New filter (A+C: combination of the first layer and the third layer of the tested mask filter) showed the highest efficiency (97.7%) with the respiratory resistance of 98 pa.

A study on nanoparticle filtration characteristics of multilayer meltblown depth filters

  • Lee, Kang-San;Hasolli, Naim;Jeon, Seong-Min;Lee, Jae-Rang;Kim, Kwang-Deuk;Park, Young-Ok;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • Due to recent development in nanotechnology and increasing usage and production of nanomaterials, numerous studies related to environment, sanitation and safety handling of nanoparticle are being conducted. Since nanoparticles can be easily absorbed into human bodies through breathing process, based on their toxic substances and their large specific surface, these particles can cause serious health damage. Therefore, to reduce nanoparticle emissions, nanofiltration technology is becoming a serious issue. Filtration is a separation process during which a fluid passes through a barrier by removing the particles from the stream. Barrier filters can be made of various materials and shapes. One of the most common type of barrier filter is the fibrous filter. Fibrous filters are divided in two types: nonwoven and woven fabrics. Polypropylene is a thermoplastic material, used as a base material for melt blown nonwoven fabric. In this study, we examined filtration property of KCl nanoparticles with a mean particle diameter of 75 nm using multilayer meltblown filter samples. These experiments verify that the penetration of nanoparticle in the filter correlate with pressure drop; the meltblown layer MB1 has the greatest effect on dust collection efficiency of the filter. Among all tested samples, dust collection efficiency of 2-layer filter was best. However, when considering the overall pressure drop and dust collection efficiency, the 4-layer filter has the highest quality factor for particles smaller than 70 nm.

Contrast Enhanced Tone Mapping Operator for High Dynamic Range Image Based on Guided Image Filter

  • Li, Xing;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.59-62
    • /
    • 2018
  • In this paper, we propose a contrast enhancement algorithm using guided image filter (GIF). The GIF is used to divide an HDR image into a base layer and a detail layer. The energy scale of base layer determinate the darkness and brightness of the image. However, the detail information in the base layer is difficult to be displayed because of the high brightness and clusters of low brightness. We propose a contrast enhancement method by adjusting the gray level of base layer by subtracting the mean value of itself. It is combined with the detail layer to preserve the detail information. Experiment results show that the proposed algorithm has better performance in detail preservation and contrast enhancement.

  • PDF

Fabry-Perot Filter Constructed with Anisotropic Space Layer and Isotropic Mirrors

  • Qi, Hongji;Hou, Yongqiang;Yi, Kui;Shao, Jianda
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In this study a new design concept of the Fabry-Perot filter, constructed with an anisotropic space layer and a couple of isotropic mirrors, was proposed based on the Maxwell equations and the characteristic matrix method. The single- and double-cavity Fabry-Perot filters were designed, and their optical properties were investigated with a developed software package. In addition, the dependence of the transmittance and phase shift for two orthogonal polarization states on the column angle of the anisotropic space layer and the incidence angle were discussed. We demonstrated that the polarization state of electromagnetic waves and phase shifts can be modulated by exploiting an anisotropic space layer in a polarization F-P filter. Birefringence of the anisotropic space layer provided a sophisticated phase modulation with varied incidence angles over a broad range, resulting in a wide-angle phase shift. This new concept would be useful for designing optical components with isotropic and anisotropic materials.

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process (BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가)

  • Son, Hyeng-Sik;Jung, Chul-Woo;Choi, Young-Ik;Lee, Gun;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1101-1109
    • /
    • 2014
  • In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

A novel urine-activated microbattery

  • Jin, Bo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.396-397
    • /
    • 2006
  • The novel urine-activated microbatteries have been successfully demonstrated. In this microbattery, a magnesium (Mg) layer and copper chloride (CuCl) in the filter paper are used as the anode and the cathode, respectively. A stack consisting of a Mg layer, CuCl-doped filter paper and a copper (Cu) layer sandwiched between two plastic layers is hot-pressed into the microbatteries at $100^{\circ}C$. The microbatteries can be activated by adding a droplet of human urine. The experimental results show that the microbattery can deliver a maximum voltage of 1.4 V and maximum power of 1.96 mW for the $1\;k{\Omega}$ load resistor.

  • PDF

Thickening of Excess Sludge using Mesh Filter (메쉬 여과모듈을 이용한 잉여슬러지 농축)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.346-351
    • /
    • 2004
  • Because of being produced a great deal of excess sludges from biological wastewater treatment process, the subject regarding treatment and disposal of them has been significantly handled in real plants. It should be considered the alternative treatment with easy operating and cost effective process in rural areas. For the thickening of wasted activated sludge from small scale wastewater treatment facilities, thus, the provisional sludge thickening system was developed by the application of mesh filter module. Three meshes with different pore size(100, 150, $200{\mu}m$) were prepared for filter modules that were used to withdraw effluent from thickening system. A filter module with $100{\mu}m$ mesh was chosen as the most effective thickening material in the viewpoint of volume reduction and effluent quality: the volume reductions of initially injected sludge with 3,600 mg/L and 9,100 mg/L were 95% and 85%, respectively, and the filtered effluents were enough good to be shown below 1.0 mg/L of SS and 1.0 NTU of turbidity. Since the filtration of thickening was influenced by the cake layer formed on mesh filter module and this system was operated in the combination of sludge thickening with gravity settling, the filter modules with smaller pore size and the larger floc size were required for long term operation safely.

Transparent Electrode Performance of TiO2/ZnS/Ag/ZnS/TiO2 Multi-Layer for PDP Filter (TiO2/ZnS/Ag/ZnS/TiO2 다층막의 PDP 필터용 전극 특성)

  • Oh, Won-Seok;Lee, Seo-Hee;Jang, Gun-Eik;Park, Seong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.681-684
    • /
    • 2010
  • The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.

Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron (칼만필터와 다층퍼셉트론을 이용한 선박 오토파일럿의 자이로스코프 신호 잡음제거)

  • Kim, Min-Kyu;Kim, Jong-Hwa;Yang, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.809-818
    • /
    • 2019
  • Since January 1, 2020, the International Maritime Organization (IMO) has put in place strong regulations to reduce air pollution caused by ships by lowing the upper limit of ship fuel oil sulfur content from 3.5% to 0.5% for ships passing through all sea areas around the world. Although it is important to reduce air pollutants by using fuel oil with low sulfur content, reducing the amount of energy waste through the economic operation of a ship can also help reduce air pollutants. Ships can follow designated routes accurately even under the influence of noise using autopilot systems. However, regardless of their quality, the performance of these systems is af ected by noise; heading angles with added measurement noise from the gyroscope are input into the autopilot system and degrade its performance. A technique to solve these problems reduces noise effects through the application of a Kalman filter, which is widely used in condition estimation. This method, however, cannot completely eliminate the effects of noise. Therefore, to further improve noise removal performances, in this study we propose a better denoising method than the Kalman filter technique by applying a multi-layer perceptron (MLP) in forward direction motion and a Kalman Filter in rotation motion. Simulations show that the proposed method improves forward direction motion by preventing the malfunction of a rudder more so than merely using a Kalman Filter.