• Title/Summary/Keyword: film type force sensor

Search Result 21, Processing Time 0.03 seconds

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.

Fabrication of an Inkjet-printed Plastic Force Sensor Using PEDOT:PSS (PEDOT:PSS를 이용한 잉크젯 프린팅 방식 플라스틱 힘 센서 개발)

  • Lee, Wanghoon;Son, Sun-Young;Koo, Jungsik;Yeom, Se-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.390-394
    • /
    • 2019
  • This paper presents an inkjet-printed plastic force sensor using PEDOT:PSS. Using a piezoelectric-type inkjet printer, the force sensor was manufactured by printing PEDOT:PSS ink onto a polyimide (PI) substrate film. Applying a vertical force of 0 to 100 N to the force sensor on the PI substrate with a thickness of 64 mm, the resistance of the force sensor increased in proportion to the input force by the length deformation of the PI substrates and the sensor pattern. As a result, the fabricated sensor has a characteristic of 0.001% /N with a linearity of 99.38%. In addition, as the thickness of the PI substrate film increased, the sensitivity of the sensor increased linearly. The fabricated force sensor is expected to be applied to industrial sites and healthcare fields.

Development and Application of System for Pressure Distribution Measurement (압력분포 측정용 시스템 개발 및 응용)

  • 김용환;박성하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.134-140
    • /
    • 2003
  • The film sensor is used for measuring pressure distribution at planar area, especially at a small space or gap. The present paper deals with the development of film type sensors and system for pressure distribution measuring. The developed system is consist of (1)film sensor with 40/sup */40 array, (2)PCI interface card with maximum sampling rate of 100㎐, and (3)software for data processing and real-time display. The contact pressure test of wiper blade and front glass of vehicle was performed with wiper blade by 40cm. Generally spring force of wiper arm is designed at 0.7∼1kN. Test results of total force was 9.4N and 7.1N in each driver and passenger toward. The paper suggested possibility for base definition in wiper design. A windshield wiper blade experiment revealed that the system successfully measured the contact force distribution during static state, showing the usefulness of the developed system.

Development of a Contact-Type Counting Device Using a Piezoelectric Film as a Sensor (압전필름을 센서로 사용한 접촉식 계수장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.239-247
    • /
    • 2005
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

Fabrication and Characteristic Analysis of a Flexible Tactile Sensor Using PVDF (PVDF를 이용한 유연 촉각센서의 제작 및 특성해석)

  • 윤명종;권대규;유기호;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.390-390
    • /
    • 2000
  • This research is the development of a skin-type tactile sensor for service robot using PVDF film for the detection of the contact state. The Prototype of the tactile sensor which has 8$\times$8 taxels was fabricated using PVDF film In the fabrication procedure of the sensor, the electrode patterns and common electrode of the thin conductive tape were attached to the both side of the 28 micro meter thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for making stable structure. The signals of a contact pressure to the tactile sensor were sensed and processed in the DSP system in which the signals were digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in PC, the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of contact state was verified through the experiment.

  • PDF

Development of a Counting Device Using a Piezoelectric Sensor (압전 센서를 사용한 계수 장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1089-1092
    • /
    • 2004
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

  • PDF

Verification of Bonding Force between PVP Dielectric Layer and PDMS for Application of Flexible Capacitive-type Touch Sensor with Large Dynamic Range (넓은 다이내믹 레인지의 유연 촉각센서 적용을 위한 PVP 유전층과 PDMS 접착력 검증)

  • Won, Dong-Joon;Huh, Myoung;Kim, Joonwon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.140-145
    • /
    • 2016
  • In this paper, we fabricate arrayed-type flexible capacitive touch sensor using liquid metal (LM) droplets (4 mm spatial resolution). Poly-4-vinylphenol (PVP) layer is used as a dielectric layer on the electrode patterned Polyethylene naphthalate (PEN) film. Bonding tests between hydroxyl group (-OH) on the PVP film and polydimethylsiloxane (PDMS) are conducted in a various $O_2$ plasma treatment conditions. Through the tests, we can confirm that non-$O_2$ plasma treated PVP layer and $O_2$ plasma treated PDMS can make a chemical bond. To measure dynamic range of the device, one-cell experiments are conducted and we confirmed that the fabricated device has a large dynamic range (~60 pF).

Capacitive force sensor

  • Miyazawa, S.;Usui, Y.;Suzuki, M.;Baba, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.611-615
    • /
    • 1994
  • In this paper, the sensitivity, linearity and temperature drift characteristics of various capacitive force sensors are evaluated and compared using new experimental methods. In particular, two designs were employed to reduce temperature drift. Both types of sensor use high-sensitivity Al coated PET film, and their externals are miniaturized. The first has a layered design consisting of two dielectric substances with different temperature characteristics. The prototype of this design had a temperature drift of only 0.1% of the sensor's capacity in the 20-80.deg. C range. The second type uses both a dummy sensor ind an active sensor with the same characteristics. The temperature drift of the prototype was one-fifth the temperature drift of a single sensor.

  • PDF

Spray-coated single-wall carbon nanotube film strain sensor (스프레이코팅 방식으로 제작된 단일벽 탄소나노튜브막 스트레인센서)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.29-33
    • /
    • 2012
  • We demonstrated the viability of fully microfabricating SWCNT(single-wall carbon nanotube) film strain sensors for force and weight sensing. Our spray-deposited SWCNT film strain sensors showed good linearity over a range from 0 to 400 microstrain, and much higher sensitivity compared to commercial metal foil-type gauges. The number of grids and the thickness of the SWCNT film were found to have a significant effect on the strain sensing properties of the SWCNT film gauges. A strain sensing methode for the CNT-based strain gauges was also investigated using a binocular type beam load cells. Preliminary results indicate that the microfabrication method shown here is promising for developing a commercial strain gauge using a spray-coated SWCNT thin film. In the near future, various studies will be performed to further enhance the properties of the spray-coated SWCNT film strain sensors.

  • PDF