• Title/Summary/Keyword: film molding

Search Result 110, Processing Time 0.029 seconds

Analysis of the effect of changes in the gate design on cell size and density in Mucell injection molding (초미세 발포성형에서 게이트의 형상 변화에 따른 셀의 크기 및 밀도에 대한 영향도 분석)

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.64-69
    • /
    • 2023
  • This paper explores the impact of gate shape changes on the size and density of foamed cells in microcellular foam injection molding. Five different gate shapes were examined while varying the amount of nitrogen gas(N2) injected for foaming. Analysis of the results showed that while average values did not change significantly, deviation values decreased by approximately 65% for cell size and 56% for density when 3.5wt% of nitrogen gas was injected in the film gate. Further analysis was conducted to verify this phenomenon, revealing that the contact area between the gate and product had the greatest impact. Our findings indicate that to ensure uniform generation of foamed cells in microcellular foaming product design, a gate with a wide contact area should be secured.

  • PDF

Preparation and Mechanical Properties of PMMA Panels (PMMA 판재의 제조 및 기계적 특성)

  • 길기승;김의식;김대수
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.142-151
    • /
    • 2003
  • PMMA panels are made by two fabrication methods; cell molding and belt molding processes. But these methods have disadvantages in productivity and cost. So plastic processing engineers are very interested in developing a new production method for PMU panels using plastic films as molds because the new method can reduce production cost of belt molding method as well as can improve productivity of cell molding method. To give a solution for developing such a new molding method, the effects of melthyl methacrylate compound composition and curing reaction condition on the processability and mechanical strength of PMMA panels were investigated in this study. Poly(vinyl acetate) film was used as molds in producing PMMA panels. To determine an MMA compound showing good processability and good mechanical properties after curing, ingredients and their compositions were optimized step by step. Acrylic acid, as a coupling agent and a modifier, played an important role in increasing mechanical strength of PMMA panels.

Characteristics of Ir-Re Thin Films on WC for Lens Glass Molding by Ion Beam Assisted DC Magnetron Sputtering (Ion beam assisted DC magnetron sputtering에 대한 렌즈 유리 성형용 WC 합금의 Ir-Re 박막 특성)

  • Park, Jong-Seok;Park, Burm-Su;Kang, Sang-Do;Yang, Kook-Hyun;Lee, Kyung-Ku;Lee, Doh-Jae;Lee, Kwang-Min
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.3
    • /
    • pp.88-93
    • /
    • 2008
  • Ir-Re thin films with Ti interlayer were deposited onto the tungsten carbide substrate by ion beam assisted DC magnetron sputtering. The Ir-Re films were prepared with targets of having two atomic percent of 7:3 and 5:5. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Ir-Re thin film also were examined. The interlayer of pure titanium was formed with 100 nm thickness. The film growth of Ir-30at.%Re was faster than that of Ir-50at.%Re in the same deposition conditions. Ir-Re thin films consisted of dense and columnar structure irrespective of the different target compositions. The values of hardness and adhesion strength of Ir-30at.%Re thin film coated on WC substrate were higher than those of Ir-50at.%Re thin film.

Cost-effective and High-performance FBAR Duplexer Module with Wafer Level Packaging (웨이퍼 레벨 패키지를 적용한 저가격 고성능 FBAR 듀플렉서 모듈)

  • Bae, Hyun-Cheol;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1029-1034
    • /
    • 2012
  • This paper presents a cost-effective and high-performance film bulk acoustic resonator (FBAR) duplexer module for US-PCS handset applications. The FBAR device uses a glass wafer level packaging process, which is a more cost-effective alternative to the typical silicon capping process. The maximum insertion losses of the FBAR duplexer at the Tx and Rx bands are of 1.9 and 2.4 dB, respectively. The total thickness of the duplexer module is 1.2 mm, including the glass-wafer bonded Tx/Rx FBAR devices, PCB board, and transfer molding material.

A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding (비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

Design and Fabrication of Durable Micro Heater for Intelligent Mold System (금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작)

  • Noh Cheolyong;Kim Youngmin;Choi Yong;Kang Shinill
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.26-30
    • /
    • 2005
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result, the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

Design and Fabrication of Durable Micro Heater for Intelligent Mold System (금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작)

  • Noh, Cheol-Yong;Kim, Young-Min;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.100-104
    • /
    • 2006
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result. the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

Applications of recently proposed closure approximations to injection molding filling simulation of short-fiber reinforced plastics

  • Chung, Du-Hwan;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.125-133
    • /
    • 2000
  • The present work is aimed at performing injection molding filling simulation of fiber suspension in polymer based matrix. The numerical simulation incorporates the coupling effect between the flow field and the fiber orientation state together with in-plane velocity gradient effect with recently proposed closure approximations. Predicted orientation components are compared with available experimental data of a film-gated strip and a center-gated disk. Predictions with IBOF closure approximation show excellent behaviors with regard to accuracy and numerical efficiency. However, predicted results seem to have consistent errors in comparison with experimental data. Diffusivity term which accounts for fiber-fiber interaction might have to be modified.

  • PDF