• Title/Summary/Keyword: film crystallinity

Search Result 643, Processing Time 0.026 seconds

Characteristics of VOx Thin Films Fabricated by Sputtering as Buffer Layer in Inverted Organic Solar Cell (역구조 유기태양전지 버퍼층 응용을 위한 스퍼터링 방법으로 제작된 VOx 박막의 특성 )

  • Seong-Soo Yang;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.36-41
    • /
    • 2023
  • We investigated the properties of vanadium oxide (VOx) buffer layers deposited by a dual RF magnetron sputtering method under various target powers for inverted organic solar cells (IOSCs). Sputter fabricatged VOx thin films exhibited higher crystallinity with the increase of target power, resulting in a uniform and large grain size. The electrical properties of VOx films are improved with the increase of target power because of the increase of V content. In the results, the performance of IOSCs critically depended on the target power during the film growth because the crystalllinity of the VOx film affects the carrier mobility of the VOx film.

Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique (RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 CdCl2 열처리 효과)

  • Choi, Su-Young;Chun, Seung-Ju;Jung, Young-Hun;Lee, Seung-Hun;Bae, Soo-Hyun;Tark, Sung-Ju;Kim, Ji-Hyun;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.497-501
    • /
    • 2011
  • The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the $CdCl_2$ heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a $CdCl_2$ heat treatment was carried out. After the $CdCl_2$ heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 ${\Omega}cm$, and the transmittance in the visible region increased from 64% to 74%.

A Study on the Properties of the PVDF Thin Film Prepared by Vacuum Deposition with Varying the Deposition Condition (진공증착법으로 제작한 PVDF 박막의 증착 조건에 따른 특성변화에 관한 연구)

  • 장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.565-571
    • /
    • 2003
  • We prepare the PVDF thin film using vacuum deposition method with the application of voltage and obtain the optimum deposition condition for $\beta$-PVDF thin film on the basis of the results of FT-IR, crystallinity of $\beta$ phase, surface roughness studies with varying the condition. The phase of PVDF thin film is analyzed by the FT-IR spectrum. When the substrate temperature and applied voltage increase from 3$0^{\circ}C$ to 9$0^{\circ}C$ and from 0kV to 9kV, respectively, the crystallinity of $\beta$ phase is introduced as large as 64%. It means that the substrate temperature and applied voltage allow the phase transition of $\beta$ phase to occur more easily. Also, the surface roughness of PVDF thin film decreases from 65.1nm to 36.6nm with the increase of substrate temperature. In results, we obtain the optimum deposition conditions for $\beta$-PVDF thin film from these experimental results and measure the Properties of the $\beta$-PVDF film deposited in the optimum condition. The dielectric properties such as dielectric constant and loss tangent decrease from 2.34 to 0.44 and from 0.27 to 0.04 with the increase of frequency, respectively.

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

The effect of the surface activation treatment on the crystallization of amorphous silicon thin film (표면 활성화 처리가 비정질 규소 박막의 결정화에 미치는 영향)

  • 이의석;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.173-179
    • /
    • 1999
  • The effect of the surface activation treatment on the crystallization of the amorphous silicon film was investigated. The amorphous silicon film was deposited on the silica substrate with LPCVD technique. Wet blasting with silica slurry or exposure with Nd:YAG laser beam was applied on the amorphous silicon film before annealing for the crystallization. For the analysis of the crystallinity, XRD, Raman, and SEM were employed. In this investigation, the prior surface activation treatment like silica wet blasting or Nd:YAG laser beam exposure before annealing for the crystallization were found to be effective in the enhancement of the crystallization. It is believed that these treatment lower the activation energy required for the crystallization of the amorphous silicon film.

  • PDF

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor (HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장)

  • Chug, Gwiy-Sang;Kim, Kang-San;Han, Ki-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

Growth of Er : $LiNbO_{3}$ single crystal thin film with high crystal quality by LPE method

  • Tong-Ik Shin;Hyun Lee;Joong-Won Shur;Byungyou Hong;Dae-Ho Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.295-298
    • /
    • 1999
  • High quality of $Er_{2}O_{3}$ doped $LiNbO_{3}$ single crystal thin films were grown by the liquid phase epitaxial (LPE) method using $Er_{2}O_{3}$ doped at concentrations of 1,3, and 5 mol% respectively. After the growth of single crystal thin film, the crystallinity and the lattice mismatch along the c-axis between the film and the substrate was examined as a function of the variations of{{{{{Er}_{2}{O}_{3}}}}} dopant concentration using a X-ray double crystal technique. There was no lattice mismatch along the c-axis for the undoped film and those doped with 1 and 3 mol% of $Er_{2}O_{3}$. For 5 mol% of $Er_{2}O_{3}$ doped film, the lattice mismatch was $7.86{\times}10^{-4}$nm along the c-axis.

  • PDF

Band Gap Energy of SrTiO3Thin Film Prepared by the Liquid Phase Deposition Method

  • Gao, Yanfeng;Masuda, Yoshitake;Koumoto, Kunihito
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.213-218
    • /
    • 2003
  • Band gap energies of SrTiO$_3$(STO) thin film on glass substrates were studied in terms of annealing temperature. The STO thin film was fabricated by our newly developed method based on the combination of the Self-Assembled Monolayer(SAM) technique and the Liquid Phase Deposition(LPD) method. The as-deposited film demonstrated a direct band gap energy of about 3.65 eV, which further increased to 3.73 eV and 3.78 eV by annealing at 40$0^{\circ}C$ and 50$0^{\circ}C$, respectively. The band gap energy saturated at about 3.70 eV for the crystallized film which was obtained by annealing at 600-$700^{\circ}C$. The relatively large band gap energies of our crystallized films were due to the presence of minor amorphous phase, grain boundaries and oxygen vacancies generated by annealing in air.