DOI QR코드

DOI QR Code

Characteristics of VOx Thin Films Fabricated by Sputtering as Buffer Layer in Inverted Organic Solar Cell

역구조 유기태양전지 버퍼층 응용을 위한 스퍼터링 방법으로 제작된 VOx 박막의 특성

  • Seong-Soo, Yang (Department of Electronics, Chosun College of Science and Technology) ;
  • Yong Seob, Park (Department of Electronics, Chosun College of Science and Technology)
  • Received : 2022.08.19
  • Accepted : 2022.10.11
  • Published : 2023.01.01

Abstract

We investigated the properties of vanadium oxide (VOx) buffer layers deposited by a dual RF magnetron sputtering method under various target powers for inverted organic solar cells (IOSCs). Sputter fabricatged VOx thin films exhibited higher crystallinity with the increase of target power, resulting in a uniform and large grain size. The electrical properties of VOx films are improved with the increase of target power because of the increase of V content. In the results, the performance of IOSCs critically depended on the target power during the film growth because the crystalllinity of the VOx film affects the carrier mobility of the VOx film.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1 A1071546).

References

  1. B. C. Thompson and J.M.J. Frechet, Angew. Chem. Int. Ed., 47, 58 (2008). [DOI: https://doi.org/10.1002/anie.200702506]
  2. J. Nelson, Mater. Today, 14, 462 (2011). [DOI: https://doi.org/10.1016/S1369-7021(11)70210-3]
  3. M. P. De Jong, J. van IJzendoorn, and M.J.A. de Voigt, Appl. Phys. Lett., 77, 2255 (2000). [DOI: https://doi.org/10.1063/1.1315344]
  4. S. K. Hau, H.-L. Yip, K. Leong, and A.K.-Y. Jen, Org. Electron., 10, 719 (2009). [DOI: https://doi.org/10.1016/j.orgel.2009.02.019]
  5. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, and Y. Yang, Adv. Funct. Mater., 19, 1227 (2009). [DOI: https://doi.org/10.1002/adfm.200801286]
  6. P. P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, and J. Bisquert, J. Phys. Chem. Lett., 2, 407 (2011). [DOI: https://doi.org/10.1021/jz200045x]
  7. J. You, C.-C. Chen, L. Dou, S. Murase, H.-S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, Adv. Mater., 24, 5267 (2012). [DOI: https://doi.org/10.1002/adma.201201958]
  8. J. H. Lee, B. Hong, and Y. S. Park, Thin Solid Films, 547, 3 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.06.045]
  9. J.A.J. Rupp, E. Janod, M.-P, Besland, B. Corraze, A. Kindsmuller, M. Querre, J. Tranchant, L. Cario, R. Dittmann, R. Waser, and D. J. Wouters, Thin Solid Films, 705, 138063 (2020). [DOI: https://doi.org/10.1016/j.tsf.2020.138063]
  10. J. P. Schreckenbach and P. Strauch, Appl. Surf. Sci., 143, 6 (1999). [DOI: https://doi.org/10.1016/S0169-4332(99)00084-7]
  11. C. Venkatasubramanian, M. W. Horn, and S. Ashok, Nucl. Instrum. Methods Phys. Res. B, 267, 1476 (2009). [DOI: https://doi.org/10.1016/j.nimb.2009.01.152]
  12. S. Sakata, P. O. Vaccaro, S. Yamaoka, I. Umezu, and A. Sugimura, Conference on Optoelectronic & Microelectronic Materials and Devices, Proceedings, COMMAD (Perth, WA, Australia, 1998) pp. 419-421.
  13. Y. S. Park, Y. G. Kim, S. H. Hwang, Y.-B. Kim, and J. H. Lee, J. Nanosci. Nanotechno., 19, 1666 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16202]
  14. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter, 12, 8837 (2000). [DOI: https://doi.org/10.1088/0953-8984/12/41/310]
  15. S. Chen, J. Lai, J. Dai, H. Ma, H. Wang, and X. Yi, Opt. Express, 17, 24153 (2009). [DOI: https://doi.org/10.1364/OE.17.024153]
  16. Y. O. Jin, A. Ozcelik, and M. W. Horn, J. Vac. Sci. Technol. A, 32, 061501 (2014). [DOI: https://doi.org/10.1116/1.4894268]
  17. X. Dong, Y. Su, Z. Wu, X. Xu, Z. Xiang, Y. Shi, W. Chen, J. Dai, Z. Huang, T. Wang, and Y. Jiang, Appl. Surf. Sci., 562, 150138 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2021.150138]
  18. H. Miyazaki, F. Utsuno, Y. Shigesato, and I. Yasui, Thin Solid Films, 281, 436 (1996). [DOI: https://doi.org/10.1016/0040-6090(96)08669-5]