• Title/Summary/Keyword: filling media

Search Result 78, Processing Time 0.028 seconds

Interrupting Characteristics of Fuses Element in Different Fillers (아크 소호재의 종류 및 입도에 따른 휴즈의 차단 특성에 관한 연구)

  • Kim, In-Sung;Han, Dong-Hee;Jang, Moon-Soon;Lee, Sei-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.900-902
    • /
    • 1999
  • This paper deals with the interrupting characteristics of fuses element in different media of arc extinguisher. Aluminum hydro-oxide, boron nitride, silica and there size have been investigated here for their prospects as filling media in heavy current, high breaking capacity fuses. The result of these study are compared with those on silica sand at high current. This study demonstrates that silica sand is far superior filler in fuses for heavy current interrupting then the compound tested.

  • PDF

Efficiency Verification of Small-Scale Sewage Treatment Plant Using Discussed Vinyl as Biofilm Media (폐비닐 재활용 여재를 이용한 소규모 오수종말처리장의 효율검증)

  • Rim, Jay-Myoung;Kim, Byoung-Ug;Koo, Bon-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.1-6
    • /
    • 1998
  • This study was conducted to use disused vinyl as biofilm for biological sewage treatment. Efficiency verification was performed on laboratory and on-site plant. In laboratory study, total biochemical oxygen demand(TBOD) removal rate was ranged 94.8~97 % in each hydraulic retention tim(HRT), 12, 16, 20, 24 hr, respectively. At that time, filling rate was 50 %. And effluent TBOD concentration was low ranged 3.64~6.28 mg/L. In on-site plant, TBOD removal rate was ranged 88.2~96.8 % and effluent TBOD concentration was 4.8~17.7mg/L. This concentration was lower than disign effluent concentration, 30mg/L. Total kjeldhal nitrogen(TKN) removal efficiency was ranged 56.8~90.9%. This was resulted higher than Lab. scale treatment efficiency.

  • PDF

Changes in Soil Physical Properties in Various Sizes of Container as Influenced by Packing Amount of Coir Dust Containing Root Media (다양한 규격의 포트에서 코이어더스트를 포함한 혼합상토의 충전밀도 차이에 의해 유발된 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.720-725
    • /
    • 2013
  • When highly shrinkable materials such as coir dust are major component of root media, the degrees of compaction during container filling of root media severely influences the physical properties of root media. It results in the changes in total porosity (TP), container capacity (CC) and air-filled porosity (AFP). This research was conducted to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. To achieve this, three root media were formulated by blending coir dust (CD) with expanded rice hull (CD + ERH, 8:2, v/v), carbonized rice hull (CD + CRH, 6:4) and ground and raw pine bark (CD + GRPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120 and 130% based on the weight of root media. Then the changes in TP, CC, and AFP were measured. Elevation of the packing amount of root media in all sizes of pot resulted in the decrease of TP. But the decrease was more severe in CD + ERH and CD + CRH than those in CD + GRPB. The CC also decreased gradually as the packing amounts were elevated in three root media, but the decreases were severe as the container sizes became larger. The AFP decreased drastically by the elevation of the packing amount of root media in all sizes of pot. The AFP was the highest in CD + CRH medium when pot sizes were smaller than 7 cm, but that was the highest in CD + ERH when the pot sizes were larger than 8.5 cm among the 3 root media tested. In this research, the elevation of packing amount of three root media influenced more severely the AFP rather than CC. This result indicates that the packing amount should be controlled to maintain appropriate level of AFP because AFP rather than CC influence severely crop growth. The results obtained through this study can be used to predict the changes in physical properties of root media as influenced by packing amount in various sizes of pots.

Study on the Methods of Enhancing the Quality of DIBR-based Multiview Intermediate Images using Depth Expansion and Mesh Construction (깊이 정보 확장과 메쉬 구성을 이용한 DIBR 기반 다시점 중간 영상 화질 향상 방법에 관한 연구)

  • Park, Kyoung Shin;Kim, Jiseong;Cho, Yongjoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • In this research, we conducted an experiment on evaluating the extending depth information method and surface reconstruction method and the interaction of these two methods in order to enhance the final intermediate view images, which are acquired using DIBR (Depth-Image-Based Rendering) method. We evaluated the experimental control groups using the Microsoft's "Ballet" and "Break Dancer" data sets with three different hole-filling algorithms. The result revealed that the quality was improved the most by applying both extending depth information and surface reconstruction method as compared to the previous point clouds only. In addition, it found that the quality of the intermediate images was improved vastly by only applying extending depth information when using no hole-filling algorithm.

Characteristic Changes in Ground-Penetrating Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground (비균일 지하에 묻혀있는 유전체 충진 비금속관에 의한 지표투과레이다 응답의 특성 변화)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2019
  • The variation of ground-penetrating radar(GPR) signal characteristics from dielectric-filled nonmetallic pipes buried in inhomogeneous ground are compared through a numerical simulation. The relative permittivity distribution of the ground is generated by using the continuous random media(CRM) technique. As a function of the relative permittivity of the material filling the nonmetallic pipe buried in the ground media, GPR signals are simulated by using the finite-difference time-domain(FDTD) method. We show that, unlike the case for homogeneous ground, the distortion characteristics of the reflected waves caused by the front convex surface and the rear concave surface of the pipe buried in inhomogeneous ground are different depending on the permittivity contrast between the inside and outside of the pipe.

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.

Effect of Operating Parameters on the Phosphorus Removal of Municipal Wastewater in a Pilot-scale Moving Bed Biofilm Reactor with Waste-tire Media (폐타이어 담체를 이용한 파일럿 규모 유동상 생물막 공정에서 하수의 인제거에 미치는 운전인자 영향)

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.436-441
    • /
    • 2008
  • This work experimentally determined the effect of operating parameters such as temperature and solid retention time (SRT) on the phosphorus removal of municipal wastewater with waste-tire media. The experiments were carried out in pilot-scale moving bed biofilm reactor filled at a 0.15 filling ratio with the media. Total phosphorus (TP) removal efficiency was $91{\pm}5$, $75{\pm}16$, and $59{\pm}14%$ at the temperature of 9~10, 10~20, and $20{\sim}26^{\circ}C$, respectively. TP removal efficiency was $71{\pm}17$, $74{\pm}16$, $74{\pm}16$, and $68{\pm}18%$ at the SRT of 3.5~5, 5~10, 10~15, and 15~20 days, respectively. At the nitrate concentration of 1~3, 3~6, and 6~9 mg/L, TP removal efficiency was $82{\pm}9$, $68{\pm}18$, $47{\pm}7%$, respectively. The concentration of total phosphorus in the effluent was $0.1{\sim}1.8(0.8{\pm}0.4)mg/L$ regardless of operating conditions, which meets Korean phosphorus limit value, 2 mg/L, for discharge into receiving waters.

A Novel Resource Allocation Algorithm in Multi-media Heterogeneous Cognitive OFDM System

  • Sun, Dawei;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.691-708
    • /
    • 2010
  • An important issue of supporting multi-users with diverse quality-of-service (QoS) requirements over wireless networks is how to optimize the systematic scheduling by intelligently utilizing the available network resource while, at the same time, to meet each communication service QoS requirement. In this work, we study the problem of a variety of communication services over multi-media heterogeneous cognitive OFDM system. We first divide the communication services into two parts. Multimedia applications such as broadband voice transmission and real-time video streaming are very delay-sensitive (DS) and need guaranteed throughput. On the other side, services like file transmission and email service are relatively delay tolerant (DT) so varying-rate transmission is acceptable. Then, we formulate the scheduling as a convex optimization problem, and propose low complexity distributed solutions by jointly considering channel assignment, bit allocation, and power allocation. Unlike prior works that do not care computational complexity. Furthermore, we propose the FAASA (Fairness Assured Adaptive Sub-carrier Allocation) algorithm for both DS and DT users, which is a dynamic sub-carrier allocation algorithm in order to maximize throughput while taking into account fairness. We provide extensive simulation results which demonstrate the effectiveness of our proposed schemes.

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Video Content Manipulation Using 3D Analysis for MPEG-4

  • Sull, Sanghoon
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-135
    • /
    • 1997
  • This paper is concerned with realistic mainpulation of content in video sequences. Manipulation of content in video sequences is one of the content-based functionalities for MPEG-4 Visual standard. We present an approach to synthesizing video sequences by using the intermediate outputs of three-dimensional (3D) motion and depth analysis. For concreteness, we focus on video showing 3D motion of an observer relative to a scene containing planar runways (or roads). We first present a simple runway (or road) model. Then, we describe a method of identifying the runway (or road) boundary in the image using the Point of Heading Direction (PHD) which is defined as the image of, the ray along which a camera moves. The 3D motion of the camera is obtained from one of the existing 3D analysis methods. Then, a video sequence containing a runway is manipulated by (i) coloring the scene part above a vanishing line, say blue, to show sky, (ii) filling in the occluded scene parts, and (iii) overlaying the identified runway edges and placing yellow disks in them, simulating lights. Experimental results for a real video sequence are presented.

  • PDF