• Title/Summary/Keyword: filling body

Search Result 126, Processing Time 0.026 seconds

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

CONFUTER-AIDED CASTING DESIGN FOR IMPLANT TITANIUM SUPERSTRUCTURES (컴퓨터 시뮬레이션을 이용한 임플란트 상부 티타늄 구조물의 주조방안)

  • Oh Se-Wook;Lee Ho-Yong;Lee Keun-Woo;Shim Jun-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.421-439
    • /
    • 2003
  • Statement of problem : It is difficult to obtain a good titanium casting body using the traditional sprue design because of high melting point of Ti, and the low fluidity and high reactivity of molten Ti. Purpose : A new sprue design for titanium casting bodies needs more trial and error. In order to decrease the number of trial and error, computer simulation(MAGMASOFT, Magmasoft Giessereitechnologie GmbH, Achen, Germany) was used to optimize sprue design in U-shaped implant superstructures. Material and method : Five kinds of sprue were examined for the design of the sprue former for titanium casting: Sprue design A(sprue length 4 mm, rectangular shape, 4 sprues), Sprue design B(sprue length 4 mm. round shape. radius 2 mm, 7 sprues), Sprue design C (sprue length 2 mm, round shape, radius 2 mm, 7 sprues). Sprue design D (sprue length 2 mm, cone shape, large radius 3mm. small radius 2mm, 7 sprues), and Sprue design E( sprue length 2 mm. one unit channel shape). Sprue design F(sprue length 2mm, one unit channel shape) was also examined for the design of the customized sprue former in the Biotan system(Schutz Dental Gmbh, Germany). The casting bodies were taken in Sprue design A, Sprue design D, Sprue design E, and Sprue design F in the Biotan casting system. The numerically predicted defects were compared with the experimental dental castings by the radiographic and sectional view observations. Results : 1. According to the result of computer simulation, turbulence during mold filling was decreased in the sequence of Sprue design F, Sprue design E, Sprue design D, Sprue design C, Sprue design B, and Sprue design A. 2. The calculated solidification time contours indicate that hot spot was moved from the casting body to the sprue button in the sequence of Sprue design A, Sprue design B, Sprue design C, Sprue design D, and Sprue design E. The filling pattern of Sprue design F was similar to that of Sprue design E. 3 The predicted filling pattern shows that less turbulence was found in the customized sprue former than in the standard sprue former. 4. According to the results of the radiographic and cross sectional observations, casting defects less than 1mm were found at the center of a casting body with Sprue design E and Sprue design F. However, larger casting defects of 4mm were found in a casting with Sprue design A. 5. The predicted casting porosity was similar to that of the real casting. Conclusion : One unit channel-type and customized sprue former can be recommended. Further research and developement of various sprue designs using computer simulation in necessary to optimize casting design, in order to reduce the formation of casting defects in implant titanuim super-structures.

Development of Gap Searching System for Car Body Assembly by Decomposition Model Representation (분해 모델을 이용한 자동차 차체의 틈새 탐색 시스템 개발)

  • Bae, Won-Jung;Lee, Sung-Hoon;Park, Sung-Bae;Jung, Yoong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • Large number of part design for aircraft and automobile is preceded by functional or sectional design groups for efficiency. However, interferences and gaps can be found when the parts and sub-assemblies by those design groups are to be assembled. These interferences and gaps cause design changes and additional repair processes. While interference problem has been resolved by digital mockup and concurrent engineering methodology, gap problem has been covered by temporary treatment of filling gap with sealant. This kind of fast fix causes fatal problem of leakage when the gap is too big for filling or the treatment gets old. With this research, we have developed a program to find the gap automatically among parts of assembly so that users can find them to correct their design before manufacturing stage. By using decomposition model representation method, the developed program can search the gap among complex car body parts to be visualized with volumetric information. It can also define the boundary between the gap and exterior empty space automatically. Though we have proved the efficiency of the developed program by applying to automobile assembly, application of the program is not limited to car body only, but also can be extended to aircraft and ship design of large number of parts.

The Behavior of Chill Layers with Temperature Variation of Shot Sleeve in Aluminum Diecasting Process (알루미늄 다이캐스팅 공정에서 사출 슬리브 온도변화에 따른 파단칠층의 거동)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.168-172
    • /
    • 2005
  • In this study, the effects of chill layers occurred in shot sleeve on the molten metal filling were analyzed through computer simulation and the behavior of chill layers with temperature variation of shot sleeve set from 200 to $280^{\circ}C$ was also investigated. The simulation results showed the chill layers set in the in-gates during the injection process change the main filling direction and cause turbulent flow pattern, resulting in porosities inside the castings. The amount of chill layers with the increasing temperature of shot sleeve was considerably reduced. And particularly, at the setting temperature of $280^{\circ}C$ by heat control unit, the big reduction in chill layers, excellent trimmed surface and the highest densification were achieved, suggesting that as the optimal sleeve condition in diecasting, especially for the highly complex parts like valve body.

Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.352-357
    • /
    • 2018
  • The slip casting process is widely used to make green bodies from ceramic slips into dense compacts with homogeneous microstructure. However, stress may be generated inside the green body during drying, and can lead to cracking and bending during sintering. When starting from the spherical powders with mono-size distribution to make the close packed body, interstitial voids on octahedral and tetrahedral sites are formed. In this research, experiments were carried out with powders of three size types (host powder (H), octahedral void filling powder (O) and tetrahedral void filling powder (T)) controlled for average particle size by milling from two commercial alumina powders. Slips were prepared using three different powder batches from H only, H+O or H+O+T mixed powders. After manufacturing green compacts by solid-casting, compacts were dried at constant temperature and humidity and sintered at $1650^{\circ}C$. Alumina samples fabricated from the multi-sized powder mixture had improved compacted and sintered densities.

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project (방사성폐기물처분연구를 위한 유성지역 화강암내 심부 시추공 단열충전광물의 광물학적 특성)

  • 김건영;고용권;배대석;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.99-114
    • /
    • 2004
  • Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

Turning the Machining Characteristics of Feed-through Ceramics (피드스루용 세라믹의 선삭 가공 특성에 관한 연구)

  • Park, Se-Jin;Ha, Jun-Tae;Yang, Dong-Ho;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.81-86
    • /
    • 2020
  • A ceramic vacuum chamber feedthrough ceramic insulator is made of Al2O3; the manufacturing process involves filling alumina powder into a urethane mold and pressing it with a rubber press to produce a molded body. Thereafter, manufacturing is completed through primary shape processing, sintering, and secondary shape processing in the green body, which is a pressurized molding body, This work is intended to prevent defects in the first shape processing by improving the ceramic insulator in the green body, and to improve the productivity of the ceramic insulator by determining the optimal processing conditions.

A Study on the Estimation of Human Damage Caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG자동차충전소에서 증기운폭발로 인한 인명피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The demand of gas as an eco-friendly energy source has being increased. With increasing the LPG demand, the number of LPG filling station. In this work, the influence on over-pressure caused by Vapor Cloud Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by the accident to a human body was estimated by applying the probit model. As a result of the injury estimation conducted by using the probit model for leakage 10% of 20ton storage tank. The distances from LPG station for death and tympanum rupture are 36.5 and 290 meters, respectively.