• 제목/요약/키워드: filler-rubber interaction

검색결과 36건 처리시간 0.019초

Filler-Polymer Interactions in Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • 제9권1호
    • /
    • pp.45-50
    • /
    • 2001
  • Formation of bound rubber depends on the filler-polymer interactions including physical adsorption, chemisorption, and mechanical interaction. Bound rubbers consist of tightly and loosely bound ones. Styrene-butadiene rubber (SBR) is composed of styrene, 1,2-, cis-1,4-, and trans-1,4-units. Filler-polymer interactions of each components of SBR with fillers, carbon black and silica, were studied by analysis of microstructure of the bound rubber. Filler-polymer interaction of the 1,2-unit with the fillers was found to be stronger than those of the other components and this phenomenon was shown more clearly in the tightly bound rubber.

  • PDF

Electron Beam Modification of Dual Phase Filler: Surface Characteristics and its Influence on the Properties of Styrene-Butadiene Rubber Vulcanizates

  • Shanmugharaj A. M.
    • 고무기술
    • /
    • 제5권2호
    • /
    • pp.94-103
    • /
    • 2004
  • The present work describes modification of dual phase filler by electron beam irradiation in presence of multifunctional acrylates like trimethylol propane triacrylate (TMPTA) or silane coupling agent like bis (3-triethoxysilylpropyltetrasulphide) and in-fluence of the modified fillers on the physical properties of styrene-butadiene rubber (SBR) vulcanizates. Modulus at 300 % elongation increases whereas the tensile strength decreases with increase in radiation dose for the dual phase filler loaded styrene-butadiene rubber vulcanizates (SBR). However, modulus and tensile strength significantly increase, which is more, pronounced at higher filler loadings for TMPTA modified dual phase filler loaded SBR. These changes in properties are explained by the equilibrium swelling data and Kraus plot interpreting the polymer-filler interaction. Electron beam modification of the filler results in a reduction of tan ${\delta}$ at $70^{\circ}C$, a parameter for rolling resistance and increase in tan ${\delta}$ at $0^{\circ}C$, a parameter for wet skid resistance of the SBR vulcanizates. Finally, the influence of modified fillers on the properties like abrasion resistance, tear strength and fatigue failure and the improvement in the properties have been explained in terms of polymer-filler interaction.

  • PDF

유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성 (Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing)

  • 김욱수;박득주;강윤희;하기룡;김원호
    • Elastomers and Composites
    • /
    • 제45권2호
    • /
    • pp.112-121
    • /
    • 2010
  • 본 연구에서는 filler-rubber interaction을 향상시키기 위하여 clay의 유기화제로 3-aminopropyltriethoxysilane(APTES)을 사용하여 styrene butadiene rubber(SBR)/organoclay nanocomposite를 라텍스법으로 제조하였다. 컴파운딩시 혼련 온도에 따라 bis(triethoxysilylpropyl)tetrasulfide(TESPT)를 첨가하여 APTES에 의해 생성된 hydroxyl group과 TESPT의 ethoxy group 사이에 실란화 반응 정도에 따른 filler-rubber interaction 향상 정도를 연구하기 위하여 X-선 회절법을 이용한 silicates의 층간구조분석, 모폴로지(morphology), 적외선분광법, 팽윤도 및 기계적물성을 평가하였다. XRD분석과 TEM이미지로 관찰한 결과 silicates 층간에 APTES가 삽입된 구조를 형성하였고 고무기질 내에 organoclay의 분산이 잘 이루어졌다는 것을 알 수 있었다. 또한, 적외선 분광법을 이용하여 APTES-MMT를 분석한 결과 APTES에 의해 silicates 표면에 다량의 hydroxyl 그룹이 형성되어 TESPT의 ethoxy group과 실란화 반응이 가능하였다. SBR/APTES-MMT 컴파운드에 TESPT를 첨가시 SBR/APTESMMT 컴파운드보다 300% 모듈러스가 약 1.3 배 정도 증가하였다. 이는 APTES의 hydroxyl group과 TESPT의 ethoxy group 사이에 실란화 반응이 이루어져 filler-rubber interaction이 향상된 결과였으며, 컴파운딩시 혼련온도 증가에 따른 모듈러스 향상 효과는 미미하였다. 결과적으로 SBR/APTES-MMT 컴파운드의 경우 고무 기질 내에 silicates의 분산 정도와 가교도 증가에 따라 모듈러스가 증가하였으며, SBR/APTES-MMT 컴파운드에 TESPT를 첨가시 filler-rubber interaction이 향상되어 모듈러스가 더욱 증가하였다.

Effects of Inorganic Fillers on Mechanical Properties of Silicone Rubber

  • Kim, Gyu Tae;Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.142-148
    • /
    • 2019
  • In this study, the effects of filler particle size and shape on the physical properties of silicone rubber composites were investigated using inorganic fillers (Minusil 5, Celite 219, and Nyad 400) except silica, which was already present as a reinforcing filler of silicone rubber. Fillers with small particle sizes are known to facilitate the formation of the bound rubber by increasing the contact area with the polymer. However, in this experiment, the bound rubber content of Celite 219-added silicone composite was higher than that of Minusil 5-added silicone composite. This was attributed to the porous structure of Celite 219, which led to an increase in the internal surface area of the filler. When the inorganic fillers were added, both thermal decomposition temperature and thermal stability were improved. The bound rubber formed between the silicone rubber and inorganic filler affected the degree of crosslinking of the silicone composite. It is well-known that as the size of the reinforcing filler decreases, the reinforcing effect increases. However, in this experiment, the hardness of the composite material filled with Celite 219 was the highest compared to the other three composites. Furthermore, the highest value of 2.19 MPa was observed for 100% modulus, and the fracture elongation was the lowest at 469%. This was a result of excellent interaction between Celite 219 filler and silicone rubber.

A Study on the Effect of Petroleum Resin on Vibration Damping Characteristics of Natural Rubber Composites

  • Yun, Yu Mi;Lee, Jin Hyok;Choi, Myoung Chan;Kim, Jung Wan;Kang, Hyun Min;Bae, Jong Woo
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.201-208
    • /
    • 2021
  • In this study, the effect of petroleum resin on the mechanical strength, morphology, and vibration damping characteristics of natural rubber (NR) composites was observed. The NR composites plasticized by adding petroleum resin showed decreased hardness and mechanical properties. A morphology analysis indicated that as the amount of petroleum resin increased, carbon black aggregates (or agglomerates) observed at the fracture surface decreased, resulting in an improvement in the dispersibility. In addition, as 20 phr of petroleum resin was added, the effective damping temperature range increased by approximately 11.4%, the hysteresis loss rate increased by 15.2%, and the resilience decreased by 36.6%. Therefore, it was confirmed that the vibration damping characteristics improved with the addition of petroleum resin. This was because the rubber-filler interaction between the NR molecular chain of the NR composite and the carbon black particles improved by the addition of petroleum resin.

실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향 (Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds)

  • 김성민;김광제
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.411-416
    • /
    • 2014
  • 극성을 띠고있어 응집되는 성향이 카본블랙에 비해 강한 실리카의 분산도는 고무 복합소재의 물성을 좌우하는 중요한 요소이다. Wolff는 입자간 상호계수(${\alpha}_F$)를 도입하여 충전제간의 구조발달을 최초로 표현하였다. 하지만, 양기능성 실란의 도입에 따라 형성되는 3차원 구조발달은 표현할 수 없었다. 후에 이를 보완하기 위하여 Wolff의 표현은 복합소재 내 ${\alpha}_F$를 포함하는 구조발달 상호계수 ${\alpha}_C$로 확장되어 표현되었지만, 실험적으로 이 표현을 증명한 연구는 없었다. 이 논문은 구조발달 상호계수인 ${\alpha}_C$${\alpha}_F$(실리카-실리카간 구조발달 상호계수), ${\alpha}_{FP}$(실리카-실란-고무간 구조발달 상호계수), ${\alpha}_P$(고무-고무간 구조발달 상호계수)로 고려하여 단기능성 및 양기능성 실란으로 처리된 실리카가 함유된 복합소재를 실험에 의해 최초로 표현하였다. 구조가 다른 실란들(PTES, OTES, TESPD, TESPT)을 이용하여 구조발달 상호계수 ${\alpha}_C$를 구성하는 ${\alpha}_F$, ${\alpha}_{FP}$, ${\alpha}_P$의 수치들을 측정하고 계산하였다. TESPT가 첨가된 복합소재의 ${\alpha}_C$의 값은 1.64이며, 이를 구성하고 있는 ${\alpha}_F$, ${\alpha}_{FP}$, ${\alpha}_P$는 각각 0.99, 0.31, 0.34로 나타났다.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

Cure Characteristics, Mechanical Properties and Abrasion Resistance of Silica Filled Natural Rubber Vulcanizate

  • Lee, Hae Gil;Park, Chan Young
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.159-166
    • /
    • 2015
  • Silica which is used for reinforcing filler in tire industry is widely known as eco-friendly material exerting $CO_2$ reduction effect through decrease of rolling resistance and improvement of wet grip. Generally silica is classified as a highly polar filler because it contains a large number of silanol (Si-OH) group on its surface. And also silica gives a lower reinforcing effect than carbon black due to its poorer rubber-filler interaction. Therefore silica is treated with silane coupling agent or activator, then following the conventional rubber blend method, vulcanized sheets were prepared using a hot press, and cure characteristics, mechanical properties and abrasion resistance of the test specimens were investigated. It was found that with an increase in the silane coupling agent content the tensile strength, 300% modulus and abrasion resistance increased while Mooney viscosity decreased and crosslink density slightly increased with an increase of activator.

Kaolin충전제(充塡劑) 표면처리(表面處理)에 관(關)한 硏究(연구) (제3보(第3報)) - 첨가(添加)된 충전제充塡劑)와 고무Matrix와의 Interaction 및 충전제(充塡劑) 보강효과(補强效果)의 특성화(特性化) - (Studies on Surface Treatment of Kaolin Filler (Part 3) - Interaction between Surface Modified Filler and Rubber Matrix and Characterization of Reinforcement Effects of Filler -)

  • 권동용;홍성일
    • Elastomers and Composites
    • /
    • 제20권1호
    • /
    • pp.25-39
    • /
    • 1985
  • Elastomer-filler interaction in terms of characterization of filler effects was studied using natural rubber(NR) loaded with kaolin fillers modified with sodium polyphosphate and poly(maleic anhydride), respectively. Kaolins modified with sodium polyphosphate or poly(maleic anhydride) show adhering characteristics by Kraus plot. Reinforcement activity according to Cunneen-Russell method is given by those fillers, in which sodium polyphosphate-treated kaolin presents more favorable results than that treated with poly(maleic anhydride) with respect to adhesion constant, reinforcement extent, elastic constant, and crosslink density. When applied to Blanchard's linkage reinforcement theory, NR vulcanizates loaded with kaolin modified with sodium polyphosphate meet the requirements for both approximate linkage reinforcement(${\psi}'$) of 1.02 to 4.94 and accurate linkage reinforcement($\psi$) of 1.00 to 1.18, representing the values of effective wetting($C_{\psi}$) for 0.001 to 0.029 and intrinsic linkage reinforcement(${\psi}_0$) for 1.015 to 1.124, respectively, whille negligible linkage reinforcement is shown by NR vulcanizates loaded with kaolin treated with poly(maleic anhydride). Dynamic storage modulus(G') given by surface modified kaolins presents more favorable crosslink density rates of $2.260{\times}10^{-5}\;mole/cm^3-min$. for sodium polyphosphate treated kaolin and $1.305{\times}10^{-5}\;mole/cm^3-min$. for poly(maleic anhydride) treated kaolin, respectively, compared to untreated kaolin showing the rate of $1.033{\times}10^{-5}\;mole/cm^3-min$.

  • PDF

Effect of Silane and Sulfur Variation on the Vulcanizate Structure of Silica-Filled Styrene-Butadiene Rubber Compounds

  • Han, Sangwook;Kim, Donghyuk;Kim, Seongrae;Kim, Jongmyoung;Mun, Dalyong;Morita, Koichi;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권1호
    • /
    • pp.32-42
    • /
    • 2021
  • The vulcanizate structure of silica-filled compounds is affected by the filler-rubber interaction (FRI) due to the silica-rubber coupling reaction and the chemical crosslink density (CCD) of the matrix rubber. In this study, the vulcanizate structure changes of silica-filled compounds according to the silane and sulfur variation were quantitatively analyzed using the Flory-Rehner and Kraus equations. In efficiency vulcanization (EV) conditions with low sulfur content, FRI increased when the bis-[3-(triethoxysilyl)propyl]tetrasulfide (TESPT) content increased, and the CCD clearly decreased. By contrast, in semi-EV conditions with high sulfur content, as TESPT content increased, the FRI increased the same way EV conditions, but the CCD was unchanged. Based on these results, it was confirmed that FRI of the silica-filled compounds increased as TESPT content increased, but CCD decreased or retained similar values according to the vulcanization system, indicating that the formation reaction of FRI was preferred over CCD.