• Title/Summary/Keyword: filler system

Search Result 307, Processing Time 0.026 seconds

THE EFFECTS OF ATELO-COLLAGEN SPONGE INSERTION ON THE PERIODONTAL HEALING OF SECOND MOLARS AFTER IMPACTED MANDIBULAR THIRD MOLAR EXTRACTION (매복 하악 제3대구치 발치와에 Atelo-collagen Sponge 삽입이 제2대구치 예후에 미치는 영향)

  • Nam, Jin-Woo;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • Extracellular matrix(ECM) is known to function as a reservoir of endogenous growth factors, can be an effective delivery system of growth factor that easily lost bioactivity in solution. Fibrillar collagens like type I collagen, are the major constituent of the ECM and structural protein of bone. Also, it can be a scaffold for osteoblast migration. The purpose of this study was to compare the effects of absorbable Atelo-collagen Sponge($Teruplug^{(R)}$) insertion in tooth extraction sites on periodontal healing of the mandibular second molar after the extraction of the impacted third molar. The study population comprised 31 cases who had been scheduled for surgical removal of impacted mandibular third molars. All patients were in good general health and were not using any medication that would influence wound healing after surgery. In 15 cases control group, none was inserted into the tooth extraction site. In 16 cases experimental groups, $Teruplug^{(R)}$ was inserted into the tooth extraction site. We evaluated tooth mobility, pocket depth, gingival margin level preoperatively and 1 week, 2 weeks, 4 weeks, and 3 months postoperatively. The change was compared with two groups using Mann-Whitney test. The results were as follows. 1. There was no significant change of tooth mobility on both groups. 2. There was tendency of decreasing of previous pocket depth causing tooth extraction on both groups. 3. On gingival margin level, there was various change according to initial swelling and loss of attachment on both groups. 4. There was tendency of decreasing of gingival margin level on both groups because of removal of inflammation and decreasing of previous pocket depth. 5. There was large change of pocket depth on buccal middle, distal, lingual distal area because of tooth extraction and bone reduction. Compared with the control group and experimental group, we observed significant difference during some periods. The results of this study suggest that absorbable atelo-collagen sponge($Teruplug^{(R)}$) is relatively favorable bone void filler with prevention of tissue collapse, food packing and enhance periodontal healing.

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF

Influence of Reinforcing Systems on Thermal Aging Behaviors of NR Composites (충전 시스템이 NR 복합체의 열노화 거동에 미치는 영향)

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • Five natural rubber (NR) composites with different reinforcing systems of unfilled, carbon black, carbon black with silane coupling agent, silica, and silica with silane coupling agent were thermally aged and change of the crosslink densities by the accelerated thermal aging was investigated. The crosslink densities on the whole increased as the aging time elapsed irrespective of the reinforcing systems. The crosslink density changes became noticeable by increasing the aging temperature. For carbon black-filled composites, the silane coupling agent made the crosslink density change to be increased. For silica-filled composites, however, the silane coupling agent made the crosslink density increment reduced at 60 and $70^{\circ}C$ and it hardly affect the degree of the crosslink density change at 80 and $90^{\circ}C$. The activation energies for the crosslink density changes of the carbon black-filled samples increased continuously in a logarithmic fashion, whereas that of the silica-filled one showed a quasi-steady state ranges at aging times of 30-150 days. The activation energy of the unfilled sample increased exponentially with the aging time. The experimental results were explained with sulfur donation from the silane coupling agent, surface modification of the filler by the silane coupling agent, adsorption of curative residues on the silica surface, and release of the adsorbed curative residues.

Empirical Study on the Effects of the Content and the Orientation of the Disk Shape Fillers on the Modulus of PP Composites (판상형 충전제의 함량과 배향에 따른 PP복합체의 영률 변화 연구)

  • Seo, Sang-Bum;Lee, Yong-Hyun;Jeoung, Sun-Kyoung;Lee, Seung-Goo;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.229-234
    • /
    • 2012
  • This paper studied the effects of the content and the orientation of the disk shape fillers on the modulus of PP composites. The experimental results were compared with the theoretical calculations which included the three dimensional ellipsoids and analyzed by two aspect ratios, ${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$proposed by Lee and his researchers. Mica and talc were used as disk shape fillers in the composites. The shapes of mica and talc were observed by SEM and aspect ratios were statistically calculated. For the case of mica, the average aspect ratios were ${\rho}_{\alpha}=13.5$ and ${\rho}_{\beta}=1.8$, and for the case of talc, they were ${\rho}_{\alpha}=3.8$ and ${\rho}_{\beta}=1.4$. Also, the effects of two aspect ratios and the content of filler on the mechanical properties were studied: For 30 wt% of mica, $E_{11}$ increased up to about 2.7 times, and for the other case of talc, $E_{11}$ increased up to about 2.3 times, respectively.

Curing and Rheological Behavior of Epoxy Resin Compositions for Underfill (언더필용 에폭시 수지 조성물의 경화 및 유변학적 거동)

  • Kim, Yoon-Jin;Park, Min;Kim, Jun-Kyung;Kim, Jin-Mo;Yoon, Ho-Gyu
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.213-226
    • /
    • 2003
  • The cure and rheological behavior of diglycidyl ether of bisphenol F/nadic methyl anhydride resin system with the kinds of imidazole were studied using a differential scanning calorimeter (DSC) and a rotational rheometer. The isothermal traces were employed to analyze cure reaction. The DGEBF/ anhydride conversion profiles showed autocatalyzed reaction characterized by maximum conversion rate at $20{\sim}40 %$ of the reaction. The rate constants ($k_1,\;k_2$) showed temperature dependance, but reaction order did not. The reaction order (m+n) was calculated to be close to 3. There are two reaction mechanisms with the kinds oi catalyst. The gel time was determined by using G'-G" crossover method, and the activation energy was obtained from this results. From measurement of rheological properties it was found that the logarithmic 1:elation time of fused silica filled DBEBF epoxy compounds linearly increased with the content of filler and decreased with temperature. The highly filled epoxy compounds showed typical pseudoplastic behavior, and the viscosity of those decreased with increasing maximum packing ratio.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

MICROLEAKAGE AND SHEAR BOND STRENGTH OF FLOWABLE COMPOSITE RESIN (Flowable Composite Resin의 미세변연누출 및 전단결합강도)

  • 박성준;오명환;김오영;이광원;엄정문;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.332-340
    • /
    • 2001
  • Flowable composite resin has lower filler content, increased flow, and lower modules of elasticity. It is suggested that flowable composite resin can be bonded to the tooth structure intimately and absorb or dissipate the stress. Therefore, it may be advantageous to use flowable composite resin for the base material of class II restoration and for the class V restoraton. The purpose of this study was to evaluate the microleakage and shear bond strength of four flowable composite resins (Aeliteflo, Flow-It, Revolution, Ultraseal XT Plus) compared to Z100 using Scotchbond Multi Purpose dentin bonding system. To evaluate the microleakage, notch-shaped class V cavities were prepared on buccal and lingual surfaces of 80 extracted human premolars and molars on cementum margin. The teeth were randomly divided into non-thermocycling group (group 1) and thermocycling group (group 2) of 40 teeth each. The experimental teeth of each group were randomly divided onto five subgroups of eight samples (sixteen surfaces). The Scotchbond Multi-Purpose and composite resin were applied for each group following the manufacturer's instructions. the teeth of group 2 were thermocycled five hundred times between 5$^{\circ}C$ and 55$^{\circ}C$. The teeth of group 2 were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, and sectioned longitudinally with a diamond saw. The dye penetration on each of the specimen were observed with a stereomicioscope at $\times$20 magnification. To evaluate the shear bond strength, 60 teeth were divided into five groups of twelve teeth each. The experimental teeth were ground horizontally below the dentinoenamel junction, so that no enamel remained. After applying Scotchbond Multi-Purpose on the dentin surface, composite resin was applied in the shape of cylinder. The cylinder was 4mm in diameter and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. After shear bond strength measurement, mode of failure was evaluated with a stereomicroscope at $\times$30 magnification. All data were statistically analyzed by One Way ANOVA and Student-Newman-Keuls method. The correlation between microleakage and shear bond strength was analyzed by linear regression. The results of this study were as follows ; 1. In non-thermocycling group, the leakage value of Z100 was significantly lower than those of flowable composite resins at the enamel and dentin margin, margin, except that Revolution showed the lower leakage value than that of Z100 at the dentin margin (p<0.05). 2. In thermocycling group, the leakage values of Z100 and Ultraseal XT Plus were lower than those of other subgroup at the enamel and dentin margin, except that Flow-It showed the lower leakage value than that of Ultraseal XT Plus at the dentin margin (p<0.05). 3. The leakage value of Z100 and Ultraseal XT Plus in thermocycling group were not higher than that in non-thermocycling group at the enamel margin. The leakage value of Z100 in thermocycling group was not higher than that in non-thermocycling group at the dentin margin (p<0.05). 4. As for the shear bond strength measurement, there were no statistically significant differences among groups (p<0.05). The shear bond strengths given in descending order were as follows: Z100(16.81$\pm$2.98 MPa), Flow-It(14.8$\pm$4.43 MPa), Aeliteflo(14.34$\pm$3.69 MPa), Revolution(13.46$\pm$4.23 MPa), Ultraseal XT Plus(12.83$\pm$3.16 MPa). 5. Failure modes of all specimens were adhesive failures. 6. There was no correlation between microleakage and shear bond strength.

  • PDF