• 제목/요약/키워드: filler metal

검색결과 300건 처리시간 0.03초

Incoloy 825합금 및 탄소강의 이종강종간 용접특성 연구 (A Study of Dissimilar Weldability of Incoloy 825 with Mild Steel)

  • 김희봉;이창희
    • 한국재료학회지
    • /
    • 제7권2호
    • /
    • pp.162-170
    • /
    • 1997
  • This study has evaluated the dissimialr weldability of Incoloy 825 Ni base alloy with a mild steel(SS41). Further a compatibility study of wrveral Ni base filler metals with the dissimilar joint between the two alloys was also included. The dissimilar weldability of Incoloy 825 with mild steel is strongly dependent upon the type of the filler metal used. Among the filler metals, ENiCrFe which has a chemical comosition similar to that of Incoloy 825 was found to be most compatible to the joint. In addition, a filler metal which showed a good cracing resistance in one dissimiar alloy combination was not necessarily graranteed to other combination. Microstructural examination with SEM, TEM and Auger revealed that the solidification cracking resestance of the dissimilar joint. between Incoloy 835 and SS41 was closely with the Ti+Nb content and with the content of a low melting eutectic phase of Laves relatibve to that of MC type phase.

  • PDF

납재를 이용한 티타늄(Ti) 안경테의 땜질 접합부의 특성에 관한 연구 (A study on the characteristics of Ti frame using filler metal at brazed joints)

  • 김대년;김기홍;김혜동;장우영
    • 한국안광학회지
    • /
    • 제8권1호
    • /
    • pp.47-52
    • /
    • 2003
  • 티타늄 안경테의 땜질을 위하여 땜납의 종류에 따른 접함을 행하고 접합부의 성분분석 실험을 통하여 납재가 접합부 성능에 미치는 영향을 조사하였다. 최적의 조건을 알아보기 위하여 X-ray micro-analysis (XMA)법으로 접합부 성분 분석과 가열방법에 따른 땜질 강도 변화를 분석하였다.

  • PDF

초내열합금 wide-gap 브레이징부의 미세조직 및 기계적 성질 변화에 미치는 첨가금속분말의 영향 (Effect of Additive Powder on Microstructural Evolutions and Mechanical Properties of the Wide-gap Brazed Region in IN738 superalloy)

  • 김용환;권숙인;변재원;이원식
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.399-407
    • /
    • 2005
  • The effect of IN738 additive powder on microstructure and mechanical properties of the wide-gap region brazed with BNi-3 filler metal powder was investigated. The wide-gap brazing was conducted in a vacuum of $2\times10^{-5}torr\;at\;1200^{\circ}C$ with various powder mixing ratios of additive to filler powders. The microstructures of the wide-gap brazed region were analyzed by SEM and AES. The region brazed with only BNi-3 filler metal powder had a microstructure consisted of proeutectic, binary eutectic and ternary eutectic structure, while that brazed with a mixture of IN738 additive powder and BNi-3 filler metal powder had a microstructure consisted of IN738 additive powder, binary eutectic of $Ni_3B-Ni$ solid solution and (Cr, W)B. The fracture strength of the wide-gap brazed region was about 680 MPa regardless of the additive powder mixing ratios. Cracks were initiated at the (Cr, W)B and binary eutectic of $Ni_3B-Ni$ solid solution, and propagated through them in the wide-gap brazed region, which lowered the fracture strength of the region.

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Study on the Performance of Laser Welded Joint of Aluminum Alloys for Car Body

  • Kutsuna, M.;Kitamura, S.;Shibata, K.;Sakamoto, H.;Tsushima, K.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.26-31
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired fer car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. In the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6NO 1 alloy welds. Aluminum alloy plate of 2.Omm in thickness with filler metal bar was welded by twin beam Nd: YAG laser facility (total power: 5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 1/min was used. The defocusing distance is kept at 0 mm. At travel speeds off 3 to 9 and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

알루미늄의 브레이징과 원리 (Aluminum Brazing and Its Principle)

  • 이순재;정도현;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.1-7
    • /
    • 2017
  • Aluminum alloys have been widely used in many fields such as electronic, structure, aero-space and vehicle industries due to their outstanding thermal and electrical conductivity as well as low cost. However, they have some difficulties for using in brazing process because of the strong oxide layer of $Al_2O_3$ on the surface of Al alloy. In addition, their melting point is similar to that of brazing filler metal resulting in thermal damage of Al alloys. Therefore, it is very important to understand the brazing principles, filler metal and its properties such as wetting, capillary flow and dissolution of base metal in the Al brazing process. This paper reviews the brazing principles, aluminum alloys, and brazing fillers. In the case of brazing principle, some formula was used for calculation of capillary force and the dissolution to obtain the best condition of Al brazing. In addition, the advanced research trends in Al brazing were introduced including thermal treatment, additive for improving property and decreasing melting point in Al brazing process.

금속입자 충전 복합재료의 전단응력에 따른 점도 및 전기 전도도 변화 (Effect of ,Shear Stress on the Viscosity and Electrical Conductivity for the Metal-Filled Composite Materials)

  • 이건웅;최동욱;이상수;김준경;박민
    • 폴리머
    • /
    • 제26권5호
    • /
    • pp.644-652
    • /
    • 2002
  • 전자파 차폐용 개스킷으로 적용할 수 있는 금속계 입자와 상온경화형 실리콘 수지의 페이스트계에 대한 정량적인 해석을 수행하였다. 금속입자 충전 복합재료의 전기 전도성 및 유변학적 거동은 입자의 형상, 크기, 분산상태에 많은 영향을 받는다. 고충전계에서 입자들은 매우 복잡한 응집상태를 형성하며 전단속도와 같은 외부요인에 의해 응집구조가 변하고 이에 따라 전기 전도도가 달라지게 된다. 본 연구에서는 금속입자의 평균직경 및 분산성에 따른 영향을 점도측정 및 전기 전도도 측정 방법을 통해 해석하였으며 이를 통해 금속입자의 선정기준을 제시하였다. 금속입자의 종류에 따라 점도분포, 전단응력의 영향, 전기 전도성의 변화 등이 차이를 보였다. 상대적으로 직경이 큰 입자에서 전단응력에 의한 영향이 두드러지게 나타났으며 동일 함량에서 분산성의 제어를 통해 점도 및 전기 전도도의 개선이 가능함을 보였다.

급속응고된 비정질 Zr-Be 합금 용가재를 이용한 Zircaloy-4의 브레이징 특성 (Brazing Characteristics of Zircaloy-4 Using Rapidly Solidified Amorphous Zr-Be Alloy Filler Metals)

  • 김상호;고진현;박춘호;김성규
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.140-145
    • /
    • 2002
  • This study was conducted to investigate the brazing characteristics between Zircaloy-4 nuclear fuel cladding tubes and bearing pads with filler metals of amorphous $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.5) binary alloy, in which they were produced in the ribbon form by the melt-spinning metod. The crystallization behavior, stability, hardness and micro-structure of brazed zone were examined by X-ray diffraction, differential scanning calorimetry, micro-Vickers hardness test, optical microscopy, and transmission electron microscopy. $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.4) amorphous alloys were crystallized to $\alpha$-Zr with increasing the temperature, and the rest were transformed to ZrBe$_2$at higher temperatures. On the other hand, $Zr_{1-x}Be_x$(0.4$\leq$x$\leq$0.5) amorphous alloys were crystallized to $\alpha$-Zr and ZrBe$_2$, simultaneously. The thickness of the layer brazed with amorphous alloy was increased with increasing the beryllium content due to the higher diffusion of Be. The morphology of brazed layer with PVD Be filler metal showed dendrite while that brazed with amorphous alloys appeared globular. Micro-Vickers hardness of brazed zone increased as the beryllium content of filler metal was decreased.