• Title/Summary/Keyword: filler content ratio

Search Result 85, Processing Time 0.025 seconds

Synthesis of Needle-Like Aragonite Crystals in the Presence of Magnesium Chloride and Their Application in Papermaking

  • Hu, Zeshan;Shao, Minghao;Li, Huayang;Cai, Qiang;Zhong, Chenghua;Xianming, Zhang;Deng, Yulin
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.315-326
    • /
    • 2009
  • PCC (precipitated calcium carbonate) and ground calcium carbonate have been widely used in alkaline papermaking. Unfortunately, although increasing filler level in papers can improve the paper properties such as brightness, opacity, stiffness gloss, smoothness, porosity, and printability, as well as decrease cost, some strength of the paper is negatively affected. In this research, needle-like aragonite was synthesized using $Ca(OH)_2$ and $CO_2$ as reactants in the presence of $MgCl_2$ and characterized with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The physical and optical properties of the paper handsheets containing these needle-like aragonite fillers were evaluated. Results indicated that tensile strength, Z-direction tensile strength and folding endurance of the paper were improved by the needle-like aragonite crystals compared to the paper using commercial PCC (precipitated calcium carbonate) as filler. The stiffness of the paper handsheet on the machine direction was increased, but no evident difference in the cross direction was found. The improvement of paper strength mainly resulted from the twining effect between the aragonite whiskers and paper fibers. The optical properties of the paper were slightly decreased with the use of the needle-like aragonites compared to commercial PCC. These results suggest that paper cost can be decreased by increasing the content of needle-like aragonite filler while paper strength will not be decreased compared to PCC filler.

Effects of Filler Characteristics and Processing Conditions on the Electrical, Morphological and Rheological Properties of PE and PP with Conductive Filler Composites

  • Kim, Youn-Hee;Kim, Dong-Hyun;Kim, Ji-Mun;Kim, Sung-Hyun;Kim, Woo-Nyon;Lee, Heon-Sang
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • The electrical, morphological and rheological properties of melt and dry mixed composites of poly ethylene (PE)/graphite (Gr), polypropylene (PP)/Gr and PP/nickel-coated carbon fiber (NCCF) were investigated as a function of filler type, filler content and processing temperature. The electrical conductivities of dry mixed PP/NCCF composites were increased with decreasing processing temperature. For the melt mixed PP/NCCF composites, the electrical conductivities were higher than those of the melt mixed PE/Gr and PP/Gr composites, which was attributed to the effect of the higher NCCF aspect ratio in allowing the composites to form a more conductive network in the polymer matrix than the graphite does. From the results of morphological studies, the fillers in the dry mixed PP/NCCF composites were more randomly dispersed compared to those in the melt mixed PP/NCCF composites. The increased electrical conductivities of the dry mixed composites were attributed to the more random dispersion of NCCF compared to that of the melt mixed PP/NCCF composites. The complex viscosities of the PP/Gr composites were higher than those of the PP/NCCF composites, which was attributed to the larger diameter of the graphite particles than that of the NCCF. Furthermore, the fiber orientation in the 'along the flow' direction during melt mixing was attributed to the decreased complex viscosities of the melt mixed PP/NCCF composites compared those of the melt mixed PP/Gr composites.

Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites (필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰)

  • Shin, Haeun;Kim, Chae Bin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxygen transmission rate can be adjusted. The composite achieved a high thermal conductivity of 28.0 W·m-1·K-1 at most and the oxygen transmission rate was decreased by 62% compared to that of the filler free matrix. Effective filler aspect ratios could be estimated by comparing thermal conductivity and oxygen transmission rate with values predicted by theoretical models. Discrepancy on the aspect ratios extracted from thermal conductivity and oxygen transmission rate comparisons was also discussed.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Experimental study of strength of cement solidified peat at ultrahigh moisture content

  • Wang, Rong
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-23
    • /
    • 2022
  • Peat soil has the characteristics of high moisture content, large void ratio and low shear strength. In this study, unconfined compressive strength and SEM tests are conducted to investigate the effects of ultrahigh moisture content, cement content, organic content and pH value on the strength of solidified peat. As an increase in the cement content and curing period, the failure mode of solidified peat soil changes from ductile failure to brittle failure. The influence of moisture content on the strength of solidified peat is greater than the cement content. As cement content increases from 10% to 30%, strength of solidified peat at a curing age of 28 days increases by 161%~485%. By increasing water content by 100%, decreases of solidified peat at a curing age of 28 days is 42%~79%. Compared with the strength of solidified peat with a pH value of 5.5, the strength of peat with a pH value of 3.5 reduces by 10% ~ 46%, while the strength of peat with a pH value of 7.0 increases by 8% ~ 38%. It is recommended to use filler materials for stabilizing peat soil with moisture content greater than 200%. Because of small size of clay particles, clay added in the cement solidified peat can improve much higher strength that that of sand.

Analysis of Mechanical Properties of Colored EPDM Based on Additive Mixing Ratio Using Mixture Design of Experimental Method (혼합물 실험계획법을 이용한 유색 EPDM의 첨가제 배합비에 따른 기계적 특성 분석)

  • Park, Yoon-A;Jeon, Euy-Sik;Kim, Young-Shin;Lee, Hyun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2022
  • With the recent increase in the demand for electric vehicles, it is necessary to identify the high current safety of automobile parts. Among the automobile parts, the EPDM parts required colored parts from the existing black; therefore, it was necessary to change the basic filler from carbon black to silica. The rubber used in automobile parts is flexible and exhibits basic characteristics of high strength and elongation. However, as the filler is changed to silica, its physical properties, such as tensile strength and elongation, are lower than those of the existing carbon black base. Therefore, it is necessary to evaluate the mechanical properties with the addition of the EPDM compound using silica as a base without degrading the physical properties of EPDM. In this study, an experiment based on the additive content was performed using the mixture experimental planning method to analyze the mechanical properties according to the additive type and mixing ratio of silica-based EPDM. The mixing ratio of the four additives was set using a simplex lattice design, and the tensile strength, elongation, modulus 300%, and permanent compression reduction rate were analyzed for mechanical characteristics, and rheometer experiments were performed for vulcanization characteristics. Through statistical analysis of the measured data, the main effects and interactions of the EPDM-blended rubber additives were analyzed. These results can be used to derive a mixing ratio of additives that satisfies the required characteristics of the EPDM compound.

A Study on the Property of Semiconductive Shield Composite through Karl Fischer Method in Power Cable (Karl Fischer를 통한 전력케이블용 반도전 Composite 특성 연구)

  • Yang, Hoon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.187-188
    • /
    • 2008
  • In this paper, we have investigated water content of semiconductive shield materials for power cables, EEA(Ethylene Ethyl Acrylate) is used polymer matrix. And filler is used CNT(Carbon Nanotube) and CB(Carbon Black). EEA, CNT and CB is favor moisture. In case of EEA, it has polyolefin resin that strong polarity combination. To research water content, experimental method used KF(Karl Fischer). KF method is Electrochemical titration based on chemical reaction. As a result, specification by KEPCO(Korea Electric Power Corporation) is lower than 800ppm. CNT and CB ratio of 80 versus 20 is best specimen that had lowest moisture content. It seem likely to increase crosslinking rate, CNT between CB.

  • PDF

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

Empirical Study on Effects of Disk Shape Filler Content and Orientation on Thermal Expansion Coefficient of PP Composites (판상형 충전제의 함량과 배향에 따른 PP복합체의 열팽창계수 영향 연구)

  • Lee, Yong-Hyun;Jeoung, Sun-Kyoung;Hwang, Hyo-Yeon;Lee, Seung-Goo;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.281-286
    • /
    • 2012
  • Experimental study was performed regarding the effects of disc-like filler orientation and contents on the coefficient of thermal expansion (CTE) of polypropylene composites using the three dimensional ellipsoids ($a_1$ > $a_2$ > $a_3$) analyzed by two aspect ratios(${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$). Measured data were compared with the theoretical approaches proposed by Lee et al. Mica and talc were useed as disk-like fillers in the composites. As experimental results, ${\alpha}_{11}/{\alpha}_m$ decreased down to ca. 0.56 with mica content of 20 wt% and the aspect ratios, ${\rho}_{\alpha}=13.5$, ${\rho}_{\beta}=1.8$. However, ${\alpha}_{33}/{\alpha}_m$ increased to more than 1. In the case of talc, ${\alpha}_{11}/{\alpha}_m$ decreased to ca. 0.63 with 20 wt% and ${\rho}_{\alpha}=3.7$, ${\rho}_{\beta}=1.4$. Finally, the longitudinal CTEs (${\alpha}_{11}$) of polypropylene composites decreased as filler contents increased, but normal CTE (${\alpha}_{33}$) increased in the low filler contents like the theory.