Effects of Filler Characteristics and Processing Conditions on the Electrical, Morphological and Rheological Properties of PE and PP with Conductive Filler Composites

  • Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Dong-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Heon-Sang (Tech Center, LG Chem. Ltd.)
  • Published : 2009.02.25

Abstract

The electrical, morphological and rheological properties of melt and dry mixed composites of poly ethylene (PE)/graphite (Gr), polypropylene (PP)/Gr and PP/nickel-coated carbon fiber (NCCF) were investigated as a function of filler type, filler content and processing temperature. The electrical conductivities of dry mixed PP/NCCF composites were increased with decreasing processing temperature. For the melt mixed PP/NCCF composites, the electrical conductivities were higher than those of the melt mixed PE/Gr and PP/Gr composites, which was attributed to the effect of the higher NCCF aspect ratio in allowing the composites to form a more conductive network in the polymer matrix than the graphite does. From the results of morphological studies, the fillers in the dry mixed PP/NCCF composites were more randomly dispersed compared to those in the melt mixed PP/NCCF composites. The increased electrical conductivities of the dry mixed composites were attributed to the more random dispersion of NCCF compared to that of the melt mixed PP/NCCF composites. The complex viscosities of the PP/Gr composites were higher than those of the PP/NCCF composites, which was attributed to the larger diameter of the graphite particles than that of the NCCF. Furthermore, the fiber orientation in the 'along the flow' direction during melt mixing was attributed to the decreased complex viscosities of the melt mixed PP/NCCF composites compared those of the melt mixed PP/Gr composites.

Keywords

References

  1. S. Srinivasan, J. Electrochem. Soc., 136, 41 (1989) https://doi.org/10.1149/1.2096647
  2. S. J. Lee, S. Mukergee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, Electrochim. Acta, 43, 3693 (1998) https://doi.org/10.1016/S0013-4686(98)00127-3
  3. T. R. Ralph, Platinum Met. Rev., 41, 102 (1997)
  4. S. Srinivasan, Fuel Cells from Fundamentals to Applications, Springer, New York, 2006, Chap. 4
  5. D. H. Doughty, B. Vyas, T. Takamura, and J. R. Huff, Mater. Res. Soc., 393, 151 (1995) https://doi.org/10.1557/PROC-393-151
  6. J. Wind, R. Spah, W. Kaiser, and G. Bohm, J. Power Sources, 105, 256 (2002) https://doi.org/10.1016/S0378-7753(01)00950-8
  7. D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Power Sources, 86, 237 (2000) https://doi.org/10.1016/S0378-7753(99)00524-8
  8. R. C. Makkus, A. H. Janssen, F. A. de Bruijn, and R. K. Mallant, J. Power Sources, 86, 274 (2000) https://doi.org/10.1016/S0378-7753(99)00460-7
  9. R. Hornung and G. Kappelt, J. Power Sources, 72, 20 (1998) https://doi.org/10.1016/S0378-7753(97)02774-2
  10. J. M. Park, J. Col. Inter. Sci., 225, 384 (2000) https://doi.org/10.1006/jcis.2000.6733
  11. N. Mutong, W. Weiduan, and H. Guoying, Compos. Interface, 15, 1 (2008) https://doi.org/10.1163/156855408783431264
  12. S. M. Hong and S. S. Hwang, Compos. Interface, 13, 145 (2006) https://doi.org/10.1163/156855406775997060
  13. S.-J. Park, M.-K. Seo, and J.-R. Lee, Compos. Interface, 13, 249 (2006) https://doi.org/10.1163/156855406775997079
  14. C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo, Macromol. Res., 14, 456 (2006) https://doi.org/10.1007/BF03219110
  15. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006) https://doi.org/10.1016/j.polymer.2006.04.008
  16. V. P. Privalko, D. I. Sukhorukov, and J. Karger-Kocsis, Polym. Eng. Sci., 39, 1525 (1999) https://doi.org/10.1002/pen.11545
  17. T. Das, A. K. Banthia, B. Adhikari, H. Jeong, C.-S. Ha, and S. Alam, Macromol. Res., 14, 261 (2006) https://doi.org/10.1007/BF03219081
  18. B. S. Kim, S. H. BAe, Y.-H. Park, and J.-H. Kim, Macromol. Res., 15, 357 (2007) https://doi.org/10.1007/BF03218799
  19. J.-M. Park and J.-W. Kim, Macromol. Res., 10, 24 (2002) https://doi.org/10.1007/BF03218285
  20. M. Park, J. Kim, S. H. Kim, M. B. Ko, C. R. Choe, and V. S. Mironov, Korea Polym. J., 8, 6 (2000)
  21. S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007) https://doi.org/10.1007/BF03218751
  22. C. K. Kum, Y. T. Sung, Y. S. Kim, H. G. Lee, W. N. Kim, H. S. Lee, and H. G. Yoon, Macromol. Res., 15, 308 (2007) https://doi.org/10.1007/BF03218792
  23. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006) https://doi.org/10.1016/j.polymer.2006.04.008
  24. F. Mighri, M. A. Huneault, and M. F. Champagne, Polym. Eng. Sci., 44, 1755 (2004) https://doi.org/10.1002/pen.20177
  25. J. M. Choi, T. J. Kim, M. S. Hyun, D. H. Peck, S. K. Kim, B. R. Lee, J. S. Park, and D. H. Jung, Carbon Sci., 6, 181 (2005)
  26. G. Yu, M. Q. Zhang, H. M. Zeng, Y. H. Hou, and H. B. Zhang, J. Appl. Polym. Sci., 73, 489 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<489::AID-APP4>3.0.CO;2-A
  27. J. Feng and C.-H. Chan, Polym. Eng. Sci., 39, 1207 (1999) https://doi.org/10.1002/pen.11507
  28. G. Yu, M.Q. Zhang, H. M. Zeng, Y. H. Hou, and H. B. Zhang, Polym. Eng. Sci., 39, 1678 (1999) https://doi.org/10.1002/pen.11562