• Title/Summary/Keyword: filled rubber

Search Result 236, Processing Time 0.022 seconds

Preparation and Physical Properties of Acrylonitrile-Butadiene Rubber Nanocomposites Filled with Zinc Dimethacrylate (디메틸아크릴산 아연을 이용한 아크릴로나이트릴-부타디엔 고무 나노복합체의 제조 및 물성)

  • 진원섭;이해성;나창운
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • Elastomeric nanocomposites were prepared by employing zinc dimethacrylate into an acrylonitrile-butadiene rubber, and their network structures, mechanical properties, and fracture morphologies were investigated according to the adding methods and contents of zinc dimethacrylate. The total crosslink density increased with increasing the zinc dimethacrylate level, due to increased ionic bonds. Both the tensile strength and tear strength increased with increasing zinc dimethacrylate loadings, and then decreased after reaching a maximum value. It was found that the tear strength and crack resistance were greatly affected by the mixing method of zinc dimethacrylate. The in-situ nanocomposites, where zinc dimethacrylate particles were formed by the reaction of zinc oxide and methacrylic acid, showed much improved tear strength and crack resistance compared to those of the nanocomposites based on the direct mixing of zinc dimetacrylate powders. This was because of the finer zinc dimethacrylate particles and improved dispersion of the in-situ nanocomposites.

A Study on Physical Properties of Epoxy Resin Filled with Surface-treated Silica: I. Surface-treating of Silica and Properties of Mixtures (표면처리된 실리카를 충전한 에폭시 수지계의 물성에 관한 연구 I. 실리카의 표면처리 및 혼합 물성)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid rubber(CTBNx8) and vinyl monomer(AA, MMA, 2-HEA, GMA) in existance of amines(TEA, CTMAB, BETAC) or peroxide(BPO). By mixing it with epoxy resin at a ratio 0~36%(volume %) of total component, liquid properties of mixtures was investigated experimentally. i) Coating ratio depended on quantity and sorts of catalyst. ii) Total coating of 2.5~5.8% was attained by using 0.1~2.0% of catalyst. iii) Treated surfaces represented each different features in according to sorts of treatment. iv) Silane/rubber or silane/rubber/vinyl represented lower viscosity and settling than non-treated or silane-treated.

  • PDF

The Effect of Glyceride Modified by Fatty Acid on Mechanical Properties of Silica filled Rubber Compounds (지방산으로 개질된 글리세라이드가 실리카 충진 배합고무의 가황과 기계적 물성에 미치는 영향)

  • Kim, Dong-Wook;Kim, Chang-Hwan;Jung, Ho-Kyun;Kang, Yong-Gu
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.114-124
    • /
    • 2013
  • To study the effects of structural difference and fatty acid chain length of glyceride, new dispersion agents having various glyceride structures such as mono-, di-, and tri-, were prepared using glycerol extracted from palm oil and fatty acid having various chain length ranges from 12 to 18. These dispersion agents were mixed with the rubber compounds and compared with conventional metal salt dispersion agents. Glyceride dispersion agent provided remarkable improvement in silica dispersion, compared to metal salt fatty acidic one, even though the viscosity of mixtures was relatively high due to low lubricating effect, and this was approved by mechanical properties, wear properties, and Payne effect. Also, the longer in chain length of fatty acid and the smaller in numbers of fatty acid, the dispersity of silica was improved.

Effects of temperature on Hardness and Stiffness of NR and SBR Vulcanizates (NR과 SBR 가황물의 경도와 강성도 대한 온도의 영향)

  • Jin, Hyun-Ho;Hong, Chong-Kook;Cho, Dong-Lyun;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Hardness of rubbery materials, which is important for dimensional stability and product performance, was investigated upon temperature change in this study. A newly developed IRHD (International Rubber Hardness Degree) tester was used to measure the hardness changes of NR and SBR specimens at various temperatures and the hardness values were compared with the Young's modulus. The harness and Young's modulus of NR and SBR showed an abrupt change near the glass transition temperatures. The hardness and Young's modulus were increased by increasing temperature due to the increased random chain conformation of molecules. The effect of temperature on hardness and Young's modulus of NR and SBR specimens filled with carbon black and silica was decreased by increasing filler content.

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Determination of Epoxy/Anhydride Mixing Ratio for the Highly Silica Filled Compounds with Chromium (III) Octoate Catalyst

  • Lee, Noori;Lee, Dong-Hoon;Lee, Jung Hoon;Min, Kyeong-sik;Kang, Sung Yun;Seo, Seungkil;Rho, Byung Lae;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, epoxy/anhydride mixing ratio for the highly silica filled compounds with chromium (III) octoate catalyst was investigated at a low curing temperature ($71^{\circ}C$ for 40 hr) by evaluating the compressive strength with the weight ratio ranges from 0.3/1.0 to 1.0/1.0 of epoxy part (Part A)/anhydride part (Part B). In case of epoxy/anhydride compounds used surface unmodified silica by coupling agent, these compounds need excess anhydride unlike the weight ratio in the conventional epoxy/anhydride compounds. In curing behavior, the epoxy/anhydride compounds containing chromium (III) octoate showed high conversions at $71^{\circ}C$ for 40 hr, even if a dipropylene glycol (DPG) was not used as a polymerization initiator. Also, DPG leads to a poor epoxy network structure. In conclusion, the appropriate weight ratio of Part A/Part B of highly silica filled epoxy/anhydride compounds with chromium (III) octoate catalyst is 0.5/1.0 and the maximum amounts of silica is 1470 phr of epoxy resin.

Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes (보론 나이트라이드와 탄소나노튜브로 충전된 실리콘 고무의 열전도도 향상)

  • Ha, Jin-Uk;Hong, Jinho;Kim, Minjae;Choi, Jin Kyu;Park, Dong Wha;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.722-729
    • /
    • 2013
  • In order to enhance the thermal conductivity of poly(dimethyl siloxane) (PDMS), boron nitride (BN) and carbon nanotubes (CNTs) were incorporated as the thermally conductive fillers. The amount of BN was increased from 0 to 100 phr (parts per hundred rubber) and the amount of CNTs was increased from 0 to 4 phr at a fixed amount of the boron nitride (100 phr). The thermal conductivity of the composites increased with an increasing concentration of BN, but the incorporation of CNTs had only a slight effect on the enhancement of thermal conductivity. Unexpectedly, the thermal degradation of the composites was accelerated by the addition of CNTs in 100 phr BN filled PDMS. Activation energy for thermal decomposition of the composites was calculated using the Horowitz-Metzger method. The curing behavior, electrical resistivity, and mechanical properties of PDMS filled with BN and CNTs were investigated.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

Effect of Crumb Rubber on the Wear Tolerance of Korean Lawngrass (폐타이어 칩이 한국들잔디의 내답압성에 미치는 영향)

  • Lee, Chung-Hwan;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.19-33
    • /
    • 2003
  • The objective of this study was to evaluate the effects of crumb rubber recycled from used tires as a soil incorporation and topdressing materials on a trafficked Korean lawngrass‘Zenith’(Zoysia japonica). In Exp 1, incorporation treatments included three particle sizes (PS: coarse =4∼6.35 mm, medium =2∼4 mm, and One : less than 2 mm in diameter) and two incorporation rate (IR: 10 and 20%). Wear treatments were applied 30 passes per day by compactor weights being 60 kg with soccer shoes. Topdressing treatments included three PS and two topdressing depth (TD: 5 and 10 mm). Wear treatments were the same as described in Exp 1. In Exp 1, the treatment with medium PS+IR 20 resulted in the tendency to have high total clipping yield. There was no significant difference in clipping yield, turfgrass visual color, coverage, and root length among the treatments. Compared to control, tissue Zn levels increased about 6.5-fold by the treatments. The treatment with fine PS +IR 20 caused a less peak deceleration than coarse PS +IR 10. Total porosity, air-filled porosity, and capillary porosity increased with fine PS +IR 20. In Exp 2, compared to controls, however, there was a difference in turfgrass visual color after the termination of traffic treatment. There was no difference in root length. The treatment with fine PS + TD 10 resulted in the highest total clipping yield. As a result of soil physical analysis, soil penetration resistance was reduced by the treatments. The treatment with coarse PS resulted in a less peak deceleration than fine PS. In conclusion, turfgrass growth was increased by crumb rubber incorporation which enhanced soil physical properties. The crumb rubber topdressing was able to cushion the crown tissue area while still providing a smooth and uniform surface, improve overall turfgrass quality, and reduce compaction.

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.