• Title/Summary/Keyword: filamentous fungus

Search Result 86, Processing Time 0.028 seconds

Isolation and Characteristics of Trichoderma harzianum FJI Producing Cellulases and Xylanase

  • Kim, Kyoung-Cheol;Yoo, Seung-Soo;Oh, Young-A;Kim, Seong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Strain FJI, a filamentous fungus isolated from rotten wood, showed high ability to hydrolyze cellulosic materials. To identify the strain FJI, ITS sequencing analysis and morphological observation were performed. The strain FJI was identified as Trichoderma harzianum. The strain produced a large amount of CMCase, xylanase, ${\beta}-glucosidase$, and avicelase. Optimal culture conditions for the production of the enzymes, such as pH, temperature, and inoculation concentration, were initial pH 6.0-7.0,$25-30^{\circ}C$, and $10^4$ ea-spores/ml in Mandel's medium, respectively. T.hanzianum FJI utilized various cellulosic materials and organic nitrogen sources to produce cellulases and xylanase, and also considerably a crystalline and/or insoluble material like Avicel and rice straw. The highest levels of CMCase and xylanase were 41.2 and 65.6 U/ml in 7 days of cultivation using 2.5% of carbon source (Avicel+CMC) and 0.5% of nitrogen source (peptone), respectively.

Combination Strategy to Increase Cyclosporin A Productivity by Tolypocladium niveum Using Random Mutagenesis and Protoplast Transformation

  • Lee, Mi-Jin;Duong, Cae Thi Phung;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.869-872
    • /
    • 2009
  • The cyclic undecapeptide cyclosporin A (CyA), one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. To increase CyA productivity by wild-type T. niveum (ATCC 34921), random mutagenesis was first performed using an antifungal agar-plug colony assay (APCA) selection approach. This generated a mutant strain producing more than 9-fold greater CyA than the wild-type strain. Additionally, a foreign bacterial gene, Vitreoscilla hemoglobin gene (VHb), was transformed via protoplast regeneration and its transcription was confirmed by RT-PCR in the UV-irradiated mutant cell. This led to an additional 33.5% increase of CyA production. Although most protoplast-regenerated T. niveum transformants tend to lose CyA productivity, the optimized combination of random mutagenesis and protoplast transformation described here should be an efficient strategy to generate a commercially valuable, yet metabolite low-producing, fungal species, such as CyA-producing T. niveum.

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans

  • Yu Jae-Hyuk
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • Heterotrimeric G proteins (G proteins) are conserved in all eukaryotes and are crucial components sensing and relaying external cues into the cells to elicit appropriate physiological and biochemical responses. Basic units of the heterotrimeric G protein signaling system include a G protein-coupled receptor (GPCR), a G protein composed of ${\alpha},\;{\beta},\;and\;{\gamma}$ subunits, and variety of effectors. Sequential sensitization and activation of these G protein elements translates external signals into gene expression changes, resulting in appropriate cellular behaviors. Regulators of G protein signaling (RGSs) constitute a crucial element of appropriate control of the intensity and duration of G protein signaling. For the past decade, G protein signaling and its regulation have been intensively studied in a number of model and/or pathogenic fungi and outcomes of the studies provided better understanding on the upstream regulation of vegetative growth, mating, development, virulence/pathogenicity establishment, and biosynthesis of secondary metabolites in fungi. This review focuses on the characteristics of the basic upstream G protein components and RGS proteins, and their roles controlling various aspects of biological processes in the model filamentous ascomycete fungus Aspergillus nidulans. In particular, their functions in controlling hyphal proliferation, asexual spore formation, sexual fruiting, and the mycotoxin sterigmatocystin production are discussed.

Ethanol production from starch by protoplast fusion between aspergillus oryzae and saccharomyces cerevisiae (사상균과 효모의 세포융합에 의한 녹말로부터의 에탄올 생산)

  • 이주실;이수연;이영록
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.221-224
    • /
    • 1989
  • Amylolytic filamentous fungus, Aspergillus oryzae and nonamylolytic sugar fermentable yeast, Saccharomyces cerevisiae were fused by protoplast fusion in order to develope microorganisms having their intergrated function. Aminoacid auxotrophic properties were used as a genetic marker of protoplast fusion, and 35% PEG 4000 was used as a fusogenic agent. Complementation frequengy of fusion was $4.6\times 10^{-6}$ Obtained fusants showed the morphology of yeast strains, the amylase activity and the ethanol productivity. Among the properties of the fusants, morphology and prototrophic property were sustained stably but their ethanol productivity from starch was reduced. Although fusant strains had 0.5-fold ethanol productivity compared to that of S. cerevisiae in glucose medium, they produced ethanol from strach by direct fermentation.

  • PDF

Spore Inoculum Optimization to Maximize Cyclosporin A Production in Tolypocladium niveum

  • Lee, Mi-Jin;Lee, Han-Na;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.913-917
    • /
    • 2008
  • The cyclic undecapeptide, cyclosporin A (CyA), is one of the most commonly prescribed immunosuppressive drugs. It is generated nonribosomally from a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. In order to maximize the production of CyA by wild-type T. niveum (ATCC 34921), each of three culture stages (sporulation culture, growth culture, and production culture) were sequentially optimized. Among the three potential sporulation media, the SSMA medium generated the highest numbers of T. niveum spores. The SSM and SM media were then selected as the optimal growth and production culture media, respectively. The addition of valine and fructose to the SM production medium was also determined to be crucial for CyA biosynthesis. In this optimized three-stage culture system, 3% of the spore inoculum generated the highest level of CyA productivity in a 15-day T. niveum production culture, thereby implying that the determination of an appropriate size of T. niveum spore inoculum plays a critical role in the maximization of CyA production.

An Improved Total RNA Extraction Method for White Jelly Mushroom Tremella fuciformis Rich in Polysaccharides

  • Zhu, Hanyu;Sun, Xueyan;Liu, Dongmei;Zheng, Liesheng;Chen, Liguo;Ma, Aimin
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.434-437
    • /
    • 2017
  • An improved method for extracting high quality and quantity RNA from a jelly mushroom and a dimorphic fungus-Tremella fuciformis which is especially rich in polysaccharides, is described. RNA was extracted from T. fuciformis mycelium M1332 and its parental monokaryotic yeast-like cells Y13 and Y32. The A260/280 and A260/230 ratios were both approximately 2, and the RNA integrity number was larger than 8.9. The yields of RNA were between 108 and $213{\mu}g/g$ fresh wt. Downstream molecular applications including reverse transcriptional PCR and quantitative real-time PCR were also performed. This protocol is reliable and may be widely applicable for total RNA extraction from other jelly mushrooms or filamentous fungi rich in polysaccharides.

Influence of Culture Conditions on Production of NGPs by Aspergillus tubingensis

  • Lilia, Lopez De Leon;Isaura, Caceres;Julie, Bornot;Elodie, Choque;Jose, Raynal;Patricia, Taillandier;Florence, Mathieu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1412-1423
    • /
    • 2019
  • The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity ($a_w$) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF

Isolation and Characterization of Two Methyltransferase Genes, AfuvipB and AfuvipC in Aspergillus fumigatus (Aspergillus fumigatus에서 Methyltransferase 유전자 AfuvipB와 AfuvipC의 분리 및 분석)

  • Elgabbar, Mohammed A. Abdo;Han, Kap-Hoon
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • In filamentous fungi, velvet complex associated with the veA gene plays pivotal roles in development and secondary metabolism. In a model fungus Aspergillus nidulans, many proteins that can interact with VeA, including two methyltransferases VipB and VipC, have been isolated and characterized. In this study, we isolated homologs of the vipB and vipC genes in the human opportunistic pathogenic fungus Aspergillus fumigatus and named AfuvipB and AfuvipC. The AfuvipB gene, annotated as Afu3g14920 in the Aspergillus Genome Database (AspGD) database, consists of 1,510 bp interrupted with 10 introns yielding 336 amino acid-long putative methyltransferase protein. Similarly, AfuvipC, which is Afu8g01930, has 10 introns and encodes a polypeptide with 339 amino acids having a methyltransferase domain in the middle of the protein. To characterize the function of the genes in A. fumigatus, knock-out mutants were generated and the phenotypes were observed. Deletion of AfuvipB gene caused no obvious phenotypic change on point inoculation but showed smaller colony than wild-type when the mutant was subjected to culture on single spore-driven culture condition. However, AfuvipC deletion mutant demonstrated no phenotypic difference from wild type both in point inoculation and streaking cultures. These results indicate that the two methyltransfereases might have a redundant role and could be dispensable in normal culture conditions.